• 제목/요약/키워드: Atomic force microscopy (AFM

검색결과 782건 처리시간 0.027초

$BaTiO_3$$TiO_2$ 연마제 첨가를 통한 BTO박막의 CMP (CMP of BTO Thin Films using $TiO_2$ and $BaTiO_3$ Mixed Abrasive slurry)

  • 서용진;고필주;김남훈;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.68-69
    • /
    • 2005
  • BTO ($BaTiO_3$) thin film is one of the high dielectric materials for high-density dynamic random access memories (DRAMs) due to its relatively high dielectric constant. It is generally known that BTO film is difficult to be etched by plasma etching, but high etch rate with good selectivity to pattern mask was required. The problem of sidewall angle also still remained to be solved in plasma etching of BTO thin film. In this study, we first examined the patterning possibility of BTO film by chemical mechanical polishing (CMP) process instead of plasma etching. The sputtered BTO film on TEOS film as a stopper layer was polished by CMP process with the self-developed $BaTiO_3$- and $TiO_2$-mixed abrasives slurries (MAS), respectively. The removal rate of BTO thin film using the$ BaTiO_3$-mixed abrasive slurry ($BaTiO_3$-MAS) was higher than that using the $TiO_2$-mixed abrasive slurry ($TiO_2$-MAS) in the same concentrations. The maximum removal rate of BTO thin film was 848 nm/min with an addition of $BaTiO_3$ abrasive at the concentration of 3 wt%. The sufficient within-wafer non-uniformity (WIWNU%)below 5% was obtained in each abrasive at all concentrations. The surface morphology of polished BTO thin film was investigated by atomic force microscopy (AFM).

  • PDF

Preparation and Properties of Bio-inspired Waterborne Polyurethanes Containing Different Amount of Paraffin Wax

  • Kim, Hye-Lin;Kim, Ae-Li;Lee, Young-Hee;Kim, Sung Yeol;Park, Cha-Cheol;Rahman, Mohammad Mizanur;Kim, Han-Do
    • 한국염색가공학회지
    • /
    • 제30권1호
    • /
    • pp.9-19
    • /
    • 2018
  • To prepare bio-inspired antifouling coating materials having similar structure with lotus, self-crosslinkable waterborne polyurethanes emulsions containing paraffin wax (CWPU/P0, 0.25, 0.5, 1.0, 1.5, 2.0, the number indicated the wt% of wax) were prepared by an emulsifier-free/solvent free prepolymer mixing process. The as-polymerized CWPU/P emulsions containing 0 - 1.00wt% of paraffin wax were found to be stable after 4 months, however, CWPU/P emulsions containing 1.50 and 2.00wt% of paraffin wax were unstable within 1 month storage. Considering the stability of emulsions, the optimum paraffin wax content was found to be about 1wt% to obtain stable antifouling coating emulsion material. The surface topology of CWPU/P film samples was characterized by atomic force microscopy (AFM). This study examined the effect of paraffin wax content on the surface roughness, water contact angle/surface energy, water swelling, light transmittance and tensile properties of CWPU/P film samples.

Performance Characteristics of Polymer Photovoltaics using Dimethyl Sulphoxide incorporated PEDOT:PSS Buffer Layer

  • 박성희;이혜현;조영란;황종원;강용수;최영선
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.238-239
    • /
    • 2010
  • Dimethyl sulphoxide (DMSO) is one of the widely-used secondary dopants in order to enhance the conductivity of poly(3, 4-ethylenedioxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS) film. In this work, we investigated the effect of DMSO doping in to PEDOT:PSS on the electrical performance of the bulk heterojunction photovoltaics consisting of poly(3-hexylthiophene-2, 5-diyl) and phenyl-C61-butyric acid methyl ester. Correlation between the power conversion efficiency and the mechanism of improving conductivity, surface morphology, and contact properties was examined. The PEDOT:PSS films, which contain different concentration of DMSO, have been prepared and annealed at different annealing temperatures. The mixture of DMSO and PEDOT:PSS was prepared with a ratio of 1%, 5%, 15%, 25%, 35%, 45%, 55% by volume of DMSO, respectively. The DMSO-contained PEDOT:PSS solutions were stirred for 1hr at $40^{\circ}C$, then spin-coated on the ultra-sonicated glass. The spin-coated films were baked for 10min at $65^{\circ}C$, $85^{\circ}C$, and $120^{\circ}C$ in air. In order to investigate the electrical performance, P3HT:PCBM blended film was deposited with thickness of 150nm on DMSO-doped PEDOT:PSS layer. After depositing 100nm of Al, the device was post-annealed for 30min at $120^{\circ}C$ in vacuum. The fabricated cells, in this study, have been characterized by using several techniques such as UV-Visible spectrum, 4-point probe, J-V characteristics, and atomic force microscopy (AFM). The power conversion efficiency (AM 1.5G conditions) was increased from 0.91% to 2.35% by tuning DMSO doping ratio and annealing temperature. It is believed that the improved power conversion efficiency of the photovoltaics is attributed to the increased conductivity, leading to increasing short-circuit current in DMSO-doped PEDOT:PSS layer.

  • PDF

산소 유량비 변화에 따른 Al 도핑된 ZnO 박막의 구조 및 광학적 특성 (Effects of Oxygen Flow Ratio on the Structural and Optical Properties of Al-doped ZnO Thin Films)

  • 손영국;황동현;조신호
    • 한국진공학회지
    • /
    • 제16권4호
    • /
    • pp.267-272
    • /
    • 2007
  • 라디오파 마그네트론 스퍼터링 방법으로 유리 기판 위에 Al 도핑된 ZnO (AZO) 박막을 성장시켰다. 증착시 스퍼터링 가스로 사용하는 산소 유량비의 변화에 따른 AZO 박막의 특성을 X-선 회절법, 원자 주사 현미경, 홀 효과 측정법으로 조사하였다. 증착 온도 $400^{\circ}C$에서 산소 유량비 0%로 증착된 AZO 박막은 가장 큰 c-축 우선 배향성과 최저의 비저항값 $6.9{\times}10^{-4}{\Omega}cm$을 나타내었다. 산소 유량비가 증가함에 따라 ZnO (002)면의 회절 피크의 세기는 실질적으로 감소하는 경향을 보였다. 또한, 산소 유량비가 감소함에 따라 전하 운반자의 농도와 홀 이동도는 증가하였으나, 전기 비저항은 감소하였다.

As/P Exchange Reaction of InAs/InGaAsP/InP Quantum Dots during Growth Interruption

  • 최장희;한원석;조병구;송정호;장유동;이동한
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.146-147
    • /
    • 2012
  • InP 기판위에 자발성장법으로 성장된 InAs 양자점은 $1.55{\mu}m$ 영역에서 발진하는 양자점 반도체 레이저 다이오드 및 광 증폭기를 제작할 수 있기 때문에 많은 관심을 받고 있다. 광통신 대역의 $1.55{\mu}m$ 반도체 레이저 다이오드 및 광 증폭기 분야에서 InAs/InP 양자점이 많은 관심을 받고 있으나, InAs/GaAs 양자점에 비해 제작이 어려운 단점을 가지고 있다. InAs/InP 양자점은 InAs/GaAs 양자점에 비해 격자 불일치가 작아 양자점의 크기가 크고 특히 As 계 박막과 P 계박막의 계면에서 V 족 원소 교환 반응으로 계면 특성 저하가 발생하여 성장이 까다롭다. As 과 P 간의 교환반응은 성장온도와 V/III 에 의해 크게 영향을 받는 것으로 보고되었다. 그러나, P계 InGaAsP 박막 위에 InAs 성장 시 발생하는 As/P 교환반응에 대한 연구는 매우 적다. 본 연구에서는 InGaAsP 박막 위에 InAs 양자점 성장 시 GI (growth interruption)에 의한 As/P 교환반응이 InAs 양자점의 형상 및 광학적 특성에 미치는 영향을 연구하였다. 시료는 수직형 저압 Metal Organic Chemical Vapor Deposition (MOCVD)를 이용하여 $520^{\circ}C$의 온도에서 성장하였다. 그림1(a) 구조의 양자점은 InP (100) 기판위에 InP buffer layer를 성장한 후 InP와 격자상수가 일치하는 $1.1{\mu}m$ 파장의 InGaAsP barrier를 50 nm 성장하였다. 그 후 As 분위기 하에서 다양한 GI 시간을 주었고 그 위에 InAs 양자점을 성장하였다. 양자점 성장 후 InGaAsP barrier를 50 nm, InP capping layer를 50 nm 성장하였다. AFM측정을 위해 InP capping layer 위에 동일한 GI 조건의 InAs/InGaAsP 양자점을 성장하였고 양자점 성장 후 As분위기 하에 온도를 내려주었다. 그림1(b) 구조의 양자점은 그림1(a) 와 모든 조건은 동일하나 InAs 양자점과 InGaAsP barrier 사이에 GaAs 2ML를 삽입한 구조이다. 양자점 형상 특성 평가는 Atomic force microscopy를 이용하였으며, 광특성 분석은 Photoluminescence를 이용하였다.

  • PDF

The Role of (111)MgO Underlayer in Growth of c-axis Oriented Barium Ferrite Films

  • Erickson, D.W.;Hong, Y.K.;Gee, S.H.;Tanaka, T.;Park, M.H.;Nam, I.T.
    • Journal of Magnetics
    • /
    • 제9권4호
    • /
    • pp.116-120
    • /
    • 2004
  • Hexagonal barium-ferrite ($BaFe_{12}O_{19}$, magnetoplumbite structure; BaM) film with perpendicularly c-axis orientation was successfully deposited on (100) silicon substrates with an MgO (111) underlayer by rf diode sputtering and in-situ heating at $920^{\circ}C$. The magnetic and structural properties of 0.27 ${\mu}m$ thick BaM films on MgO (111) underlayers were compared to films of the same thickness deposited onto single-crystal MgO (111) and c-plane ($000{\ell}$) sapphire ($Al_2O_3$) substrates by vibrating sample magnetometry (VSM), x-ray diffractometer (XRD), and atomic force microscopy (AFM). The thickness dependence of MgO (111) underlayers on silicon wafer was found to have a large effect on both magnetic and structural properties of the BaM film. The thickness of 15 nm MgO (111) underlayers produced BaM films with almost identical magnetic and structural properties as the single-crystal substrates; this can be explained by the lower surface roughness for thinner underlayer thicknesses. The magnetization saturation ($M_s$) and the ratio $H_{cII}/H_{c{\bot}}$ for the BaM film with a 15 nm MgO (111) underlayer is 217 emu/cc and 0.24, respectively. This is similar to the results for the BaM films deposited on the single-crystal MgO (111) and sapphire substrates of 197 emu/cc and 0.10, 200 emu/cc and 0.12, respectively. Therefore, the proposed MgO (111) underlayer can be used in many applications to promote c-axis orientation without the cost of expensive substrates.

RF스퍼터링법으로 성장시킨 n-ZnO 박막과 n-ZnO/p-GaN 이종접합 LED의 특성 (Properties of the RF Sputter Deposited n-ZnO Thin-Film and the n-ZnO/p-GaN heterojunction LED)

  • 신동휘;변창섭;김선태
    • 한국재료학회지
    • /
    • 제23권3호
    • /
    • pp.161-167
    • /
    • 2013
  • The ZnO thin films were grown on GaN template substrates by RF magnetron sputtering at different RF powers and n-ZnO/p-GaN heterojunction LEDs were fabricated to investigate the effect of the RF power on the characteristics of the n-ZnO/p-GaN LEDs. For the growth of the ZnO thin films, the substrate temperature was kept constant at $200^{\circ}C$ and the RF power was varied within the range of 200 to 500W at different growth times to deposit films of 100 nm thick. The electrical, optical and structural properties of ZnO thin films were investigated by ellipsometry, X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and by assessing the Hall effect. The characteristics of the n-ZnO/p-GaN LEDs were evaluated by current-voltage (I-V) and electroluminescence (EL) measurements. ZnO thin films were grown with a preferred c-axis orientation along the (0002) plane. The XRD peaks shifted to low angles and the surface roughness became non-uniform with an increase in the RF power. Also, the PL emission peak was red-shifted. The carrier density and the mobility decreased with the RF power. For the n-ZnO/p-GaN LED, the forward current at 20 V decreased and the threshold voltage increased with the RF power. The EL emission peak was observed at approximately 435 nm and the luminescence intensity decreased. Consequently, the crystallinity of the ZnO thin films grown with RF sputtering powers were improved. However, excess Zn affected the structural, electrical and optical properties of the ZnO thin films when the optimal RF power was exceeded. This excess RF power will degrade the characteristics of light emitting devices.

Solution-Processable Field-Effect Transistors Fabricated Using Aryl Phenoxazine Based Polymers as the Active Layer

  • Yoon, Hye-Seon;Lee, Woo-Hyung;Lee, Ji-Hoon;Lim, Dong-Gun;Hwang, Do-Hoon;Kang, In-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권10호
    • /
    • pp.2371-2376
    • /
    • 2009
  • Three phenoxazine-based conjugated polymers, namely, the aryl substituted phenoxazine homopolymer (P1) as well as the dimeric phenoxazine-fluorene (P2) and phenoxazine-bithiophene (P3) copolymers, were synthesized via the Ni(0) mediated Yamamoto reaction and the palladium-catalyzed Suzuki coupling reaction. The weight-averaged molecular weights ($M_w$) of P1, P2, and P3 were found to be 27,000, 22,000, and 15,000, respectively, and their polydispersity indices were 3.6, 1.8, and 2.1. All the polymers were soluble in common organic solvents such as chloroform, toluene, and so on. The UV-visible absorption maxima for P1, P2, and P3 in the film state were located at 421, 415 and 426 nm, respectively, and the ionization potentials of the polymers ranged between 4.90 and 5.12 eV. All the studied phenoxazine-based polymers exhibited amorphous behavior, as confirmed by X-ray diffraction (XRD) and atomic force microscopy (AFM) studies. Thin film transistors were fabricated using the top-contact geometry. P1 showed much better thin-film-transistor performance than P2 or P3: A thin film of P1 gave a saturation mobility of 0.81 ${\times}\;10^{-3}\;cm^2V^{-1}s^{-1}$ and an on/off ratio of about $10^2$.

증착조건과 진공열처리 온도에 따른 ITO/PES 박막의 특성 연구 (Properties of ITO on PES film in dependence on the coating conditions and vacuum annealing temperatures)

  • 이재영;박지혜;김유성;천희곤;유용주;김대일
    • 한국재료학회지
    • /
    • 제17권4호
    • /
    • pp.227-231
    • /
    • 2007
  • Transparent conducting indium tin oxide (ITO) films were deposited onto the Polyethersulfone (PES) substrate by using a magnetron sputter type negative metal ion source. In order to investigate the influence of cesium (Cs) partial pressure during deposition and annealing temperature on the optoelectrical properties of ITO/PES film the films were deposited under different Cs partial pressures and post deposition annealed under different annealing temperature from $100^{\circ}C$ to $170^{\circ}C$ for 20 min at $3\;{\times}\;10^{-1}$ Pa. Optoeleetrical properties of ITO films deposited without intentional substrate heating was influenced strongly by the Cs partial pressure and the Cs partial pressure of $1.5\;{\times}\;10^{-3}$ Pa was characterized as an optimal Cs flow condition. By increasing post-deposition vacuum annealing temperature both optical transmission in visible light region and electrical conductivity of ITO films were increased. Atomic force microscopy (AFM) micrographs showed that the surface roughness also varied with post-deposition vacuum annealing temperature.

Polyimide Multilayer Thin Films Prepared via Spin Coating from Poly(amic acid) and Poly(amic acid) Ammonium Salt

  • Ha, You-Ri;Choi, Myeon-Cheon;Jo, Nam-Ju;Kim, Il;Ha, Chang-Sik;Han, Dong-Hee;Han, Se-Won;Han, Mi-Jeong
    • Macromolecular Research
    • /
    • 제16권8호
    • /
    • pp.725-733
    • /
    • 2008
  • Polyimide (PI) multilayer thin films were prepared by spin-coating from a poly(amic acid) (PAA) and poly(amic acid) ammonium salt (PAAS). PI was prepared from pyromellitic dianhydride (PMDA) and 4,4'-oxydianiline (ODA) PAA. Different compositions of PAAS were prepared by incorporating triethylamine (TEA) into PMDA-ODA PAA in dimethylacetamide. PI multilayer thin films were spin-coated from PMDA-ODA PAA and PAAS. The PAAS comprising cationic and anionic moieties were spherical with a particle size of $20{\sim}40\;nm$. Some particles showed layers with ammonium salts, despite poor ordering. Too much salt obstructed the interaction between the polymer chains and caused phase separation. A small amount of salt did not affect the interactions of the interlayer structure but did interrupt the stacking between chains. Thermogravimetric analysis (TGA) showed that the average decomposition temperature of the thin films was $611^{\circ}C$. All the films showed almost single-step, thermal decomposition behavior. The nanostructure of the multilayer thin films was confirmed by X -ray reflectivity (XRR). The LF 43 film, which was prepared with a 4:3 molar ratio of PMDA and ODA, was comprised of uniformly spherical PAAS particles that influenced the nanostructure of the interlayer by increasing the interaction forces. This result was supported by the atomic force microscopy (AFM) data. It was concluded that the relationship between the uniformity of the PAAS particle shapes and the interaction between the layers affected the optical and thermal properties of PI layered films.