• Title/Summary/Keyword: Atomic force microscopy (AFM)

Search Result 782, Processing Time 0.025 seconds

Fabrication of Micro Diamond Tip Cantilever for AFM-based Tribo-Nanolithography (AFM 기반 Tribo-Nanolithography 를 위한 초미세 다이아몬드 팁 켄틸레버의 제작)

  • Park Jeong-Woo;Lee Deug-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.39-46
    • /
    • 2006
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin mask layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The mask layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

Deterministic manipulation and visualization of near field with ultra-smooth, super-spherical gold nanoparticles by atomic force microscopy

  • KIM, MINWOO;LEE, JOOHYUN;YI, GI-RA;LEE, SEUNGWOO;SONG, YOUNG JAE
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.111.1-111.1
    • /
    • 2015
  • As an alternative way to get sophisticated nanostructures, atomic force microscopy (AFM) has been used to directly manipulate building primitives. In particular, assembly of metallic nanoparticles(NPs) can provide various structures for making various metamolecules. As far, conventionally made polygonal shaped metallic NPs showed non-uniform distribution in size and shape which limit its study of fundamental properties and practical applications. In here, we optimized conditions for deterministic manipulation of ultra-smooth and super-spherical gold nanoparticles (AuNPs) by AFM. [1] Lowered adhesion force by using platinum-iridium coated AFM tips enabled us to push super-spherical AuNPs in linear motion to pre-programmed position. As a result, uniform and reliable electric/magnetic behaviors of assembled metamolecules were achieved which showed a good agreement with simulation data. Furthermore, visualization of near field for super-spherical AuNPs was also addressed using photosensitive azo-dye polymers. Since the photosensitive azo-dye polymers can directly record the intensity of electric field, optical near field can be mapped without complicated instrumental setup. [2] By controlling embedding depth of AuNPs, we studied electric field of AuNPs in different configuration.

  • PDF

Pitch Measurement of One-dimensional Gratings Using a Metrological Atomic Force Microscope and Uncertainty Evaluation (미터 소급성을 갖는 원자간력 현미경을 이용한 1차원 격자 피치 측정과 불확도 평가)

  • Kim Jong-Ahn;Kim Jae Wan;Park Byong Chon;Eom Tae Bong;Kang Chu-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.84-91
    • /
    • 2005
  • We measured the pitch of one-dimensional (ID) grating specimens using a metrological atomic force microscope (M-AFM). The ID grating specimens a.e often used as a magnification standard in nano-metrology, such as scanning probe microscopy (SPM) and scanning electron microscopy (SEM). Thus, we need to certify the pitch of grating specimens fur the meter-traceability in nano-metrology. To this end, an M-AFM was setup at KRISS. The M-AFM consists of a commercial AFM head module, a two-axis flexure hinge type nanoscanner with built-in capacitive sensors, and a two-axis heterodyne interferometer to establish the meter-traceability directly. Two kinds of ID grating specimens, each with the nominal pitch of 288 nm and 700 nm, were measured. The uncertainty in pitch measurement was evaluated according to Guide to the Expression of Uncertainty in Measurement. The pitch was calculated from 9 line scan profiles obtained at different positions with 100 ㎛ scan range. The expanded uncertainties (k = 2) in pitch measurement were 0.10 nm and 0.30 nm for the specimens with the nominal pitch of 288 nm and 700 nm. The measured pitch values were compared with those obtained using an optical diffractometer, and agreed within the range of the expanded uncertainty of pitch measurement. We also discussed the effect of averaging in the measurement of mean pitch using M-AFM and main components of uncertainty.

Analysis of Microstructure for Resistance Spot Welded TRIP Steels using Atomic Force Microscope (원자력간 현미경을 이용한 TRIP강 저항 점용접부의 미세조직 분석에 관한 연구)

  • Choi, Chul Young;Ji, ChangWook;Nam, Dae-Geun;Jang, Jaeho;Kim, Soon Kook;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • The spot welds of Transformation Induced Plasticity (TRIP) steels are prone to interfacial failure and narrow welding current range. Hard microstructures in weld metal and heat affected zone arenormally considered as one of the main reason to accelerate the interfacial failure mode. There fore, detailed observation of weld microstructure for TRIP steels should be made to ensure better weld quality. However, it is difficult to characterize the microstructure, which has similar color, size, and shape using the optical or electron microscopy. The atomic force microscope (AFM) can help to analyze microstructure by using different energy levels for different surface roughness. In this study, the microstructures of resistance spot welds for AHSS are analyzed by using AFM with measuring the differences in average surface roughness. It has been possible to identify the different phases and their topographic characteristics and to study their morphology using atomic force microscopy in resistance spot weld TRIP steels. The systematic topographic study for each region of weldments confirmed the presence of different microstructures with height of 350nm for martensite, 250nm for bainite, and 150nm for ferrite, respectively.

Electrical Characterization of Nanoscale $Au/TiO_2$ Schottky Diodes Probed with Conductive Atomic Force Microscopy

  • Lee, Hyunsoo;Van, Trong Nghia;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.290.1-290.1
    • /
    • 2013
  • The electrical characterization of Au islands on TiO2 at nanometer scale (as a Schottky nanodiode) has been studied with conductive atomic force microscopy in ultra-high vacuum. The diverse sizes of the Au islands were formed by using self-assembled patterns on n-type TiO2 semiconductor film using the Langmuir-Blodgett process. Local conductance images showing the current flowing through the TiN coated AFM probe to the surface of the Au islands on TiO2 was simultaneously obtained with topography, while a positive sample bias is applied. The boundary of the Au islands revealed a higher current flow than that of the inner Au islands in current AFM images, with the forward bias presumably due to the surface plasmon resonance. The nanoscale Schottky barrier height of the Au/TiO2 Schottky nanodiode was obtained by fitting the I-V curve to the thermionic emission equation. The local resistance of the Au/TiO2 nanodiode appeared to be higher at the larger Au islands than at the smaller islands. The results suggest that conductive atomic force microscopy can be used to reveal the I-V characterization of metal size dependence and the electrical effects of surface plasmon on a metal-semiconductor Schottky diode at nanometer scale.

  • PDF

Surface Analysis of PZT Film Prepared by Sputting Method (SPUTTERING법에 의해 성장시킨 PZT박막의 표면 분석)

  • 김영관;박주상;추정우;손병청;이전국
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.2
    • /
    • pp.107-112
    • /
    • 1996
  • Thin films of $Pb(Zr_xTi_{1-x})O_3$)PZT) were grown on $Pt/SiO_2/Si(100)$ at various temperatures by RF magnetron sputtering method. Surface morphology of these films were studied by using Atomic Force Microscopy(AFM). These films were also analyzed by using Atomic Force Microscopy(AFM). These films were also analyzed by using X-ray photoemission spectroscopy(XPS) for determining their chemical composition and their depth profile. It was found that the films grown at the substrated temperature of $300^{\circ}C$ have much more smooth surface characteristics in comparison to those films grown at room temperature, which may be explained in terms of surface mobility of ad-atoms such as Pb. It was also found that Pb enrichment in the near surface region enhanced for the films grown at higher substate temperature.

  • PDF

Estimation of Nanomechanical Properties of Nanosurfaces Using Phase Contrast Imaging in Atomic Force Microscopy (원자력현미경의 위상차영상을 이용한 나노표면의 미소기계적 특성 평가)

  • Ahn, Hyo-Sok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.115-121
    • /
    • 2007
  • Phase contrast imaging in atomic force microscopy showed a promise as an effective tool for better understanding of micromechanical properties of surfaces at nano scale. A qualitative estimation model for phase contrast images obtained with a tapping mode AFM was developed. This investigation demonstrated the high efficiency of combined analysis of topography and phase contrast images for characterizing nanosurfaces. Phase contrast images allowed estimation of relative stiffness(elastic modulus) of the sample surface. The phase contrast images revealed a significant inhomogeneity of the nano scale worn surfaces. Phase contrast images are also capable of revealing the formation of tribofilms.

Nanoscale Nonlinear Dynamics of Carbon Nanotube Probe Tips (탄소나노튜브 탐침의 나노 비선형 동역학)

  • 이수일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.83-86
    • /
    • 2004
  • Carbon nanotube (CNT) tips in tapping mode atomic force microscopy (AFM) enable very high-resolution imaging, measurements, and manipulation at the nanoscale. We present recent results based on experimental analysis that yield new insights into the dynamics of CNT probe tips in tapping mode AFM. Experimental measurements are presented of the frequency response and dynamic amplitude-distance data of a high-aspect-ratio multi-walled (MW) CNT tip to demonstrate the non-linear features including tip amplitude saturation preceding the dynamic buckling of the MWCNT. Surface scanning is performed using a MWCNT tip on a SiO$_2$ grating to verify the imaging instabilities associated with MWCNT buckling when used with normal control schemes in the tapping mode. Lastly, the choice of optimal setpoints for tapping mode control using CNT probe tip are discussed using the experimental results.

  • PDF

Nanotribological Behavior of Cu Oxide and Silicon Tip (Cu Oxide와 Silicon Tip 사이의 나노트라이볼러지 작용)

  • Kim, Tae-Gon;Kim, In-Kwon;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.364-365
    • /
    • 2005
  • This paper report nanotribological behavior between Si tip and Cu wafer surfaces which was treated various concentration of $H_2O_2$. This experimental approach has proven atomic level insight into Cu CMP. It has been used to study interfacial friction and adhesion force between Si tip and Cu wafer surfaces in air by atomic force microscopy (AFM). Adhesion force of Cu surfaces which was pre-cleaned in diluted HF solution was lager than Cu oxide surfaces. Adhesion force of Cu oxide surface was saturated around 7 nN. Slope of normal force vs lateral signal was increased as increasing concentration of $H_2O_2$ and it was saturated around 24. Friction force of Cu oxide was lager than Cu.

  • PDF