• Title/Summary/Keyword: Atomic force microscopy (AFM)

Search Result 782, Processing Time 0.029 seconds

Scanning Tunneling Microscopy (STM)/Atomic Force Microscopy(AFM) Studies of Silicon Surfaces Treated in Alkaline Solutions of Interest to Semiconductor Processing

  • Park, Jin-Goo
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.1
    • /
    • pp.55-63
    • /
    • 1995
  • Alkaline solutions such as $NH_4$OH, choline and TMAH (($CH_3$)$_4$NOH) have been introduced in semiconductor wet processing of silicon wafers to control ionic and particulate impurities following etching in acidic solutions. These chemicals usually mixed with hydrogen peroxide and/or surfactants to control the etch rate of silicon. The highest etch rate was observed in $NH_4$OH solutions at a pH in alkaline solutions. It indicates that the etch rate depends on the content of $OH^{-}$ as well as cations of alkaline solutions. STM/AFM techniques were used to characterize the effect of alkaline solutions on silicon surface roughness. In SC1 (mixture of $NH_4$OH : $H_2$$O_2$ : $H_2$O) solutions, the reduction of the ammonium hydroxide proportion from 1 to 0.1 decreased the surface roughness ($R_{rms}$) from 6.4 to $0.8\AA$. The addition of $H_2$$O_2$ and surfactants to choline and TMAH reduced the values of $R_{p-v}$ and $R_{rms}$ significantly. $H_2$$_O2$ and surfactants added in alkaline solutions passivate bare silicon surfaces by the oxidation and adsorption, respectively. The passivation of surfaces in alkaline solutions resulted in lower etch rate of silicon thereby provided smoother surfaces.s.ces.s.

  • PDF

Synthesis, Self-assembly, and Catalytic Activity of 1H-Imidazole Amphiphiles

  • Park, Jun-Ha;Kim, Min-Soo;Seo, Sang-Hyuk;Chang, Ji-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2193-2198
    • /
    • 2011
  • We prepared polycatenar 1H-imidazole amphiphiles having a structure in which a 1H-imidazole head was connected through a benzene ring to a pheny group having two or three oligo(ethylene glycol) chains and studied their supramolecular assembly by fluorescence spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM). When the aqueous solutions of the amphiphiles ($5{\times}10^{-5}M{\sim}10^{-3}M$) were deposited onto a carbon-coated copper grid and dried, twisted structures with diameters of ~200-300 nm were imaged by TEM and AFM. We presume that the structures comprised a chain of the amphiphile dimers formed via successive hydrogen bonding between the 1H of the imidazole group and 3N of the neighboring one. In a solution of pH 4, entangled fibers with diameters of several nanometers were observed by TEM. In a pH 10 solution, film-like aggregates formed exclusively. The 1H-imidazole amphiphiles hydrolyzed tetraethoxysilane to induce gelation to form fibrous and spherical silica structures at neutral pH in aqueous solutions. No silica was formed when imidazole was used instead of the amphiphiles, suggesting that the selfassembled aggregates of the amphiphiles were responsible for the gelation.

Effect of 3C-SiC buffer layer on the characteristics of AlN films supttered on Si Substrates (3C-SiC 버퍼층이 Si 기판위에 스퍼터링된 AlN 막의 특성에 미치는 영향)

  • Ryu, Kyeong-Il;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.3-6
    • /
    • 2009
  • Aluminum nitride (AIN) thin films were deposited on a polycrystalline 3C-SiC intermediate layer by a pulsed reactive magnetron sputtering system. Characteristics of the AIN/SiC heterostructures were investigated by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The columnar structure of AIN thin films was observed by FE-SEM. The surface roughness of AlN films on the 3C-SiC buffer layer was measured using AFM. The XRD pattern of AlN films on SiC buffer layers was highly oriented at (002). Full width at half maximum (FWHM) of the rocking curve near (002) reflections was $1.3^{\circ}$. The infrared absorbance spectrum indicated that the residual stress of AIN thin films grown on SiC buffer layers was nearly negligible. The 3C-SiC intermediate layers are promising for the realization of nitride based electronic and mechanical devices.

  • PDF

Effect of Substrate Bias Voltage on the Growth of Chromium Nitride Films

  • Jang, Ho-Sang;Kim, Yu-Sung;Lee, Jin-Hee;Chun, Hui-Gon;You, Yong-Zoo;Kim, Dae-Il
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.618-621
    • /
    • 2007
  • Chromium nitride (CrN) films were deposited on silicon substrate by RF magnetron sputtering assisted by inductive coupled nitrogen plasma without intentional substrate heating. Films were deposited with different levels of bombarding energy by nitrogen ions $(N^+)$ to investigate the influence of substrate bias voltage $(V_b)$ on the growth of CrN thin films. XRD spectra showed that the crystallographic structure of CrN films was strongly affected by substrate bias voltage. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) results showed that surface roughness and grain size of the CrN films varied significantly with bias voltage. For - 80 $V_b$ depositions, the CrN films showed bigger grain sizes than those of other bias voltage conditions. The lowest surface roughness of 0.15 nm was obtained from the CrN films deposited at .130 $V_b$.

Surface Roughness Evolution of Gate Poly Silicon with Rapid Thermal Annealing (미세게이트용 폴리실리콘의 쾌속 열처리에 따른 표면조도 변화)

  • Song, Oh-Sung;Kim, Sang-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.3
    • /
    • pp.261-264
    • /
    • 2005
  • The 90 nm gate pattern technology have been virtualized by employing the hard mask and the planarization of fate poly silicon. We fabricated 70nm poly-Si on $200 nm-SiO_2/p-Si(100)$ substrates using low pressure chemical vapor deposition (LPCVD) to investigate roughness evolution by varying rapid annealing temperatures. The samples were annealed at the temperatures of $700^{\circ}C\~1100^{\circ}C$ for 40 seconds with a rapid thermal annealer. The surface image and the surface roughness were measured by a field emission scanning electron microscopy (FESEM) and an atomic force microscopy (AFM), respectively. The poly silicon surface became more rough as temperature increased due to surface agglomeration. The optimum conditions of poly silicon planarization were achieved by annealed at $700^{\circ}C$ for 40 seconds.

  • PDF

The Evolution of Preferred Orientation and Morphology of NiO Thin Films under Variation of Plasma gas and RF Sputtering Power (플라즈마 가스와 RF 파워에 따른 NiO 박막의 우선배향성 및 표면형상 변화)

  • Ryu Hyun-Wook;Choi Gwang-Ryo;Noh Whyo-Sup;Park Yong-Ju;Kwon Yong;Park Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.121-125
    • /
    • 2004
  • Nickel oxide (NiO) thin films were deposited on Si(100) substrates at room temperature by RF magnetron sputtering from a NiO target. The effects of plasma gas and RF power on the crystallographic orientation and surface morphology of the NiO films were investigated. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were employed to characterize the deposited film. It was found that the type of plasma gases affected the crystallographic orientation, deposition rate, surface morphology, and crystallinity of NiO films. Highly crystalline NiO films with (100) orientation were obtained when it was deposited under Ar atmosphere. On the other hand, (l11)-oriented NiO films with poor crystallinity were deposited in $O_2$. Also, the increase in RF power resulted in not only higher deposition rate, larger grain size, and rougher surface but also higher crystallinity of NiO films.

Scanning Photoelectron Microscopy Study on the Chemical State of Locally Oxidized and Hydrogenized Graphene Layer

  • Km, Wondong;Byun, Iksu;Hwang, Inrok;Park, Bae Ho;Baek, Jaeyun;Shin, Hyun-Joon;Shiu, Hung Wei;Chen, Chia-Hao
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.144.1-144.1
    • /
    • 2013
  • Recently, we have developed the local oxidization and hydrogenization method for graphene layer using atomic force microscope(AFM) tip at room temperature and ambient pressure. With this method we could create locally oxidized or hydrogenized area on the graphene layer with various size from nanometer to micrometer scale, by controlling the amplitude and polarity of the voltage supplied between conducting AFM tip and the graphene layer. We investigated the chemical states of functionalized C atoms in the graphene layer using scanning photoelectron microscopy. By measuring C 1s core level X-ray Photoemission Spectra of the C atoms and suitable fitting process carried on the measured spectra, we could obtain the fraction of oxidization and hydrogenization under various condition, and the evolution of each chemical state during thermal annealing process.

  • PDF

Investigations on the effects of mouthrinses on the colour stability and surface roughness of different dental bioceramics

  • Soygun, Koray;Varol, Osman;Ozer, Ali;Bolayir, Giray
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.200-207
    • /
    • 2017
  • PURPOSE. In this study, three bioceramic materials, [IPS Empress CAD (Ivoclar), IPS e.max CAD (Ivoclar), and Lava Ultimate CAD (3M ESPE)] were treated with three commercial mouthrinses [Listerine, Tantum Verde, and Klorhex]; and changes in colour reflectance and surface roughness values were then quantitatively assessed. MATERIALS AND METHODS. One hundred and twenty ceramic samples, with dimensions of $2{\times}12{\times}14mm$, were prepared and divided into nine sample groups, except three control samples. The samples were immersed in the mouthrinse solutions for 120 hrs, and changes in colour reflectance and surface roughness values were measured by UV light spectrophotometry (Vita Easyshade; VITA Zahnfabrik) and by profilometer device (MitutoyoSurftest SJ-301), respectively. The change of surface roughness was inspected by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). RESULTS. There was a positive correlation between the ${\Delta}E$ and increase in the surface roughness. Two of the ceramic materials, IPS Empress and Lava Ultimate, were affected significantly by the treatment of the mouthrinse solutions (P<.05). The most affecting solution was Tantum Verde and the most affected material was Lava Ultimate. As expected, the most resistant material to ${\Delta}E$ and chemical corrosion was IPS e max CAD among the materials used. CONCLUSION. This work implied that mouthrinse with lower alcohol content had less deteriorating effect on colour and on the surface morphology of the bioceramic materials.

Development of the Growth and Wavelength Control Technique of In As Quantum Dots for 1.3 μm Optical Communication Devices (1.3 μm 광통신용 소자를 위한 InAs 양자점 성장 및 파장조절기술 개발)

  • Park, Ho-Jin;Kim, Do-Yeob;Kim, Goon-Sik;Kim, Jong-Ho;Ryu, H.H.;Jeon, Min-Hyon;Leem, Jae-Young
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.390-395
    • /
    • 2007
  • We systematically investigated the effects of InAs coverage variation, two-step annealing and an asymmetric InGaAs quantum well (QW) on the structural and optical characteristics of InAs quantum dots (QDs) by using atomic force microscopy (AFM), transmission electron microscopy (TEM) and photoluminescence (PL) measurement. The transition of size distribution of InAs QDs from bimodal to multi-modal was noticeably observed with increasing InAs coverage. By means of two-step annealing, it is found that significant narrowing of the luminescence linewidth (from 132 to 31 meV) from the InAs QDs occurs together with about 150 meV blueshift, compared to as-grown InAs QDs. Finally, the InAs QDs emitting at longer wavelength of $1.3\;{\mu}m$ with narrow linewidth were grown by an asymmetric InGaAs QW. The excited-state transition for the InAs QDs with an asymmetric InGaAs QW was not noticeably observed due to the large energy-level spacing between the ground states and the first excited states. The InAs QDs with an asymmetric InGaAs QW will be promising for the device applications such as $1.3\;{\mu}m$ optical-fiber communication.

Use of Local Electrochemical Methods (SECM, EC-STM) and AFM to Differentiate Microstructural Effects (EBSD) on Very Pure Copper

  • Martinez-Lombardia, Esther;Lapeire, Linsey;Maurice, Vincent;De Graeve, Iris;Klein, Lorena;Marcus, Philippe;Verbeken, Kim;Kestens, Leo;Gonzalez-Garcia, Yaiza;Mol, Arjan;Terryn, Herman
    • Corrosion Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • When aiming for an increased and more sustainable use of metals a thorough knowledge of the corrosion phenomenon as function of the local metal microstructure is of crucial importance. In this work, we summarize the information presented in our previous publications[1-3] and present an overview of the different local (electrochemical) techniques that have been proven to be effective in studying the relation between different microstructural variables and their different electrochemical behavior. Atomic force microscopy (AFM)[1], scanning electrochemical microscopy (SECM)[2], and electrochemical scanning tunneling microscopy (EC-STM)[3] were used in combination with electron backscatter diffraction (EBSD). Consequently, correlations could be identified between the grain orientation and grain boundary characteristics, on the one hand, and the electrochemical behavior on the other hand. The grain orientation itself has an influence on the corrosion, and the orientation of the neighboring grains also seems to play a decisive role in the dissolution rate. With respect to intergranular corrosion, only coherent twin boundaries seem to be resistant.