• 제목/요약/키워드: Atomic Resolution

검색결과 373건 처리시간 0.018초

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • 공보현;조형균;송근만;윤대호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF

중성자분말회절법을 이용한 흑운모의 Rietveld Structure Refinement (Rietveld Structure Refinement of Biotite Using Neutron Powder Diffraction)

  • 전철민;김신애;문희수
    • 자원환경지질
    • /
    • 제34권1호
    • /
    • pp.1-12
    • /
    • 2001
  • 본 연구에서는 층상규산염광물 중 삼팔면체 운모족에 속하는 흑운모-1Μ 시료를 대상으로 중성자분말회절분석을 수행하였다. 분말회절분석기의 저온 및 고온 시료장치를 이용하여 -263$^{\circ}C$, 상온, 30$0^{\circ}C$, $600^{\circ}C$, 90$0^{\circ}C$의 온도조건에서 중성자 회절자료를 취득하였으며 Rietveld법으로 구조분석을 실시하였다. 정밀화 지수 $R_{b}$는 5.06%-11.9%, S(Goodness of fitness)는 2.97~3.94로 수렴되었다. -263$^{\circ}C$부터 $600^{\circ}C$까지는 단위포상수 a, b, c가 온도의 증가에 따라서 팽창되는 경향을 뚜렷하게 관찰할 수 있었으며 90$0^{\circ}C$에서는 a와 b의 경우 오히려 감소하는 결과를 보여주었다. -263$^{\circ}C$~$600^{\circ}C$ 온도구간에서 c축의 팽창성은 a, b 축의 팽창성에 비하여 상대적으로 더 크며 이는 단위포의 부피증가가 이 온도 범위에서는 c축의 팽창에 의해 주도됨을 지시한다. 90$0^{\circ}C$에서 보이는 경향의 불일치성은 이 온도에서 탈수산기화-산화반응이 우세하게 발생함으로서 팔면체 구조내 $Fe^{2+}$$Fe^{3+}$ 로 산화되어 양이온 반경이 변화되었기 때문으로 해석된다. 저온조건(-263$^{\circ}C$)에서 결정된 수소원자의 위치는 O4자리로부터 0.9103$\AA$ 떨어져서 (x/a=0.138, y/b=0.5, z/c=0.305)의 위치에 존재하는 것으로 계산되었다. 각 온도조건에 대하여 사면체회전각($\alpha$*, 팔면체판 두께($t_{oct}$), M-O간 거리는 단위포축 팽창성 결과와 마찬가지로 90$0^{\circ}C$의 고온조건을 제외하고는 일반적으로 온도가 증가함에 따라서 $\alpha$*, $t_{oct}$, M-O간 거리가 증가하는 경향을 보이지만 그경향이 상대적으로 덜 분명하며, 온도변화에 따른 팔면체 형태변화의 경향은 보이지 않았는데, 이는 금운모 등과 달리 M1, M2 팔면체에는 Fe와 Mg가 치환되어 분포하고 있기 때문으로 해석된다.다.

  • PDF

지하투과레이더를 활용한 팔공산 도립공원 북바위 내부구조 연구 (Imaging Inner Structure of Bukbawi at Mt. Palgong Provincial Park Using Ground Penetrating Radar)

  • 김형기;백승호;김승섭;이나영;권장순
    • 자원환경지질
    • /
    • 제50권6호
    • /
    • pp.487-495
    • /
    • 2017
  • 경상북도 군위군 부계면 동산리에 위치한 팔공산 도립공원의 한 등산로에는 '북바위'라 불리는 화강암질 암체가 존재한다. 이 암체에서는 특정 부위를 타격했을 때 북과 같은 타악기에서 발생하는 공명음과 유사한 공명 현상이 발생한다. 이러한 소리를 발생시키는 공명 현상의 지질학적 원인으로는 화강암 생성 과정에서 내부 기체가 빠져나가면서 형성된 공동이 존재할 가능성과 생성 이후 지질학적으로 오랜 기간 동안 겪은 풍화 작용에 의한 박리 현상에 기인할 가능성이 있다. 이 연구에서는 북바위 화강암체에서 공명을 일으키는 내부구조를 보다 정밀하게 파악하기 위하여 비파괴 탐사기법인 지하투과레이더 탐사를 수행하였다. 지하투과레이더 탐사 기법은 수 MHz에서 수 GHz범위의 고주파 레이더 신호를 탐사 대상의 표면에서 내부로 투과시켜 물성의 변화 혹은 불연속면이 존재하는 곳에서 반사되는 반사파들의 진폭을 기록하여 해석한다. 화강암체 최외곽 표면에 존재할 것으로 추정되는 내부구조를 영상화하는 것이 연구 목표이므로 탐사 심도는 얕지만 고해상도 자료 획득이 가능한 1 GHz 레이더를 이용하였다. 3차원 내부구조 영상화를 위하여 암체 표면에 격자를 구성하여 탐사를 수행하였다. 탐사 자료 해석 결과 북소리와 같은 공명이 일어나는 지점들에서 강한 반사 레이더파가 관찰되었으며, 위치에 따라 균열과 공동에서의 반사파 특징이 모두 관찰되었다. 또한 공명이 가장 크게 일어나는 지점에서 두 불연속면이 교차하면서 만들어진 공동 구조가 관찰되었다. 주어진 균열 구조를 반영하는 수치 모델을 적용하여 계산한 결과, 공명 현상에는 화강암의 박리 작용에 의한 균열과 암석 생성 당시의 미아롤리틱 구조가 함께 기여한 것으로 보인다. 이와 같이 일반 대중의 흥미를 유발하는 지질 구조체에 대한 비파괴 탐사 기반의 영상화 연구 활동은 지구과학 대중화에 많은 기여를 할 수 있을 것으로 판단된다.