• Title/Summary/Keyword: Atomic Emission Detector

Search Result 23, Processing Time 0.017 seconds

Characterization of Atomic Emission Detector for Gas Chromatography Using Cylindrical Microwave Cavity (원통형 Microwave Cavity를 이용한 기체크로마토그라프 원자발광 검출기의 특성에 관한 연구)

  • Park, Young-Joo;Yoo, Hee-Soo
    • Analytical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.263-268
    • /
    • 1992
  • A plasma source with cylindrical microwave cavity was used as atomic emission detector for gas chromatography. Detection limits of several elements were determined for this system. Detection limits for bromine and sulfur were 0.46 pg/s and 0.51 ng/s, respectively. The plasma was stable at the range of flow rate of 10 to 20mL/min.

  • PDF

Development of Schiff Base Column and Glow Discharge Detector for HPLC : Preliminary Study I (HPLC용 Schiff Base 컬럼과 Glow Discharge 검출기의 개발에 관한 기초연구 I)

  • Kang, Mi-Ra;Kim, Eun-Soo;Shin, Jung-Sook;Park, Hyun-Kook;Yang, Jung-Sung;Lee, Sang C.
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.265-272
    • /
    • 1995
  • Schiff base ligand columns and glow discharge detector have been developed for the trace analysis of metal ions desolved in water. Various types of hydrazide Schiff base ligands have been used and, additionally, they were examined as a filling material of a HPLC column. The hydrazide Schiff base ligands used were N, N'-oxalybis(salicylaldehydrazone) (OBSH), N, N'-malonylbis(salicylaldehydrazone) (MBSH), and N, N'-succinylbis(salicylaldehydrazone) (SBSH). A mixture of Schiff base ligand and poly(styrene divinylbenzene) was examined and it showed a smooth flow of solution. The OBSH-polymer column demonstrated different effluent factors for different metal ions. Metal ions in eluates were detected by Hollow Cathode Glow Discharge-Atomic Emission Spectrometry(HCGD-AES). HCGD-AES showed good sensitivity and selectivity. This is only the preliminary results of new OBSH-polymer column and glow discharge detector.

  • PDF

Evaluation of TlBr semiconductor detector in gamma camera imaging: Monte Carlo simulation study

  • Youngjin Lee;Chanrok Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4652-4659
    • /
    • 2022
  • Among the detector materials available at room temperature, thallium bromide (TlBr), which has a relatively high atomic number and density, is widely used for gamma camera imaging. This study aimed to verify the usefulness of TlBr through quantitative evaluation by modeling detectors of various compound types using Monte Carlo simulations. The Geant4 application for tomographic emission was used for simulation, and detectors based on cadmium zinc telluride and cadmium telluride materials were selected as a comparison group. A pixel-matched parallel-hole collimator with proven excellent performance was modeled, and phantoms used for quality control in nuclear medicine were used. The signal-to-noise ratio (SNR), contrast to noise ratio (CNR), sensitivity, and full width at half maximum (FWHM) were used for quantitative analysis to evaluate the image quality. The SNR, CNR, sensitivity, and FWHM for the TlBr detector material were approximately 1.05, 1.04, 1.41, and 1.02 times, respectively, higher than those of the other detector materials. The SNR, CNR and sensitivity increased with increasing detector thickness, but the spatial resolution in terms of FWHM decreased. Thus, we demonstrated the feasibility and possibility of using the TlBr detector material in comparison with commercial detector materials.

STUDY ON THE ELECTRON GENERATION BY A MICRO-CHANNEL PLATE BASED ON EGS4 CALCULATIONS AND THE UNIVERSAL YIELD CURVE

  • Moon, B.S.;Han, S.H.;Kim, Y.K.;Chung, C.E.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.177-181
    • /
    • 2001
  • The conversion efficiency of a cesium iodine coated micro-channel plate is studied. We use the EGS4 code to transport photons and generated electrons until their energies become less than 1keV and 10keV respectively. Among the generated electrons, the emission from the secondary electrons located within the escape depth of 56nm from the photo-converter boundary is estimated by integrating the product of the secondary electrons with a probability depending only on their geometric locations. The secondary electron emission from the generated electrons of energy higher than 100eV is estimated by the 'universal yield curve'. The sum of these provides an estimate for the secondary electron yield and we show that results of applying this algorithm agree with known experimental results. Using this algorithm, we computed secondary electron emissions from a micro-channel plate used in a gas electron multiplier detector that is currently being developed at Korea Atomic Energy Research Institute.

  • PDF

Radiation Damage of SiC Detector Irradiated by High Dose Gamma Rays

  • Kim, Yong-Kyun;Kang, Sang-Mook;Park, Se-Hwan;Ha, Jang-Ho;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.87-90
    • /
    • 2006
  • Two SiC radiation detector samples were irradiated by Co-60 gamma rays. The irradiation was performed with dose rates of 5 kGy/hour and 15 kGy/hour for 8 hours, respectively. Metal/semiconductor contacts on the surface were fabricated by using a thermal evaporator in a high vacuum condition. The SiC detectors have metal contacts of Au(2000 ${\AA}$)/Ni(300 ${\AA}$) at Si-face and of Au(2000 ${\AA}$)/Ti(300 ${\AA}$) at C-face. I-V characteristics of the SiC semiconductor were measured by using the Keithley 4200-SCS parameter analyzer with voltage sources included. From the I-V curve, we analyzed the Schottky barrier heights(SBHs) on the basis of the thermionic emission theory. As a result, the 6H-SiC semiconductor showed- similar Schottky barrier heights independent to the dose rates of the irradiation with Co-60 gamma rays.

  • PDF

Determination of trace impurities of HFC-134a by gas chromatograph with atomic emission detector (GC/AED) (GC/AED를 이용한 HFC-134a의 미량 불순물 분석)

  • Kim, Myeongja;Lim, Jeongsik;Lee, Jinbok;Lee, Jeongsoon
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.240-251
    • /
    • 2017
  • 1,1,1,2-Tetrafluoroethane (HFC-134a), which is used as refrigerant in air conditioners, has been recently regulated as a greenhouse gas and is recommended for reuse by refining. It is very important to quantitatively analyze trace impurities present in the refrigerant to evaluate the criteria for reuse. In this study, trace impurities including C, H, Cl, and F, which are difficult to quantify because there are no reference materials, were quantitatively analyzed by a gas chromatograph-atomic emission detector (GC/AED); for this analysis, this was preceded by a qualitative analysis with a GC-mass selective detector (GC/MSD). In addition, the AED response was investigated using a hydrocarbon mixed reference material, which was proportional to the number of atoms in the component. Fifteen refrigerant components were detected as trace impurities in HFC-134a by qualitative analysis of trace impurities including C, H, Cl, and F in the samples. Based on the results of the qualitative analysis, quantitative analysis of trace impurities using AED showed that the highest mole fractions were for the $CHClF_2$ component ($45438.38{\mu}mol/mol$) in one sample and for the $C_2H_2ClF_3$ component ($1311.47{\mu}mol/mol$) in another sample. From this study, it has been shown that it is possible for this analytical method to be applied to the qualitative and quantitative analysis of trace compounds in refrigerants, which are difficult to quantify because of the absence of reference materials.

Development of Controlling and Analyzing Software for Portable Atomic Emission Spectrometry (휴대용 원자 방출 분광계를 위한 제어 및 분석용 소프트웨어 개발)

  • Lee, Sang Chun;Lee, Chang-Soo;Jung, Min-Soo;Ryu, Dong-Hang
    • Analytical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • This study focuses on developing a controlling and analyzing software for the portable atomic emission spectrometer equipped with an electrothermal vaporizer(ETV) that can perform the in-situ trace analysis of heavy metal ions dissolved in water. The software works well for a notebook PC and it is exclusively developed for the real time analysis with a line filter and a photomultiplier light detector. The program is designed to operate under Windows 95 environment and either Korean or English can be used as a main language. The Delphi 2.0 language software is mainly used for programing. The program is designed to make a calibration curve and the system users can get the analytical data in a short time. And a final report can be generated without having difficulties. This software can be easily modified for other analytical atomic spectrometers.

  • PDF

Optimization of Yonsei Single-Photon Emission Computed Tomography (YSECT) Detector for Fast Inspection of Spent Nuclear Fuel in Water Storage

  • Hyung-Joo Choi;Hyojun Park;Bo-Wi Cheon;Kyunghoon Cho;Hakjae Lee;Yong Hyun Chung;Yeon Soo Yeom;Sei Hwan You;Hyun Joon Choi;Chul Hee Min
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.29-39
    • /
    • 2024
  • Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14 × 14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA's device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.