• 제목/요약/키워드: Atmospheric physics

검색결과 274건 처리시간 0.026초

An Analysis of far Ultraviolet Proton Aurora

  • Kim, Yong-Ha;S. Chakrabarti;G. R. Gladstone;S. C. Solomon
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 1996년도 한국우주과학회보 제5권1호
    • /
    • pp.28-28
    • /
    • 1996
  • No Abstract, See Full Text

  • PDF

Numerical method study of how buildings affect the flow characteristics of an urban canopy

  • Zhang, Ning;Jiang, Weimei;Hu, Fei
    • Wind and Structures
    • /
    • 제7권3호
    • /
    • pp.159-172
    • /
    • 2004
  • The study of how buildings affect wind flow is an important part of the research being conducted on urban climate and urban air quality. NJU-UCFM, a standard $k-{\varepsilon}$ turbulence closure model, is presented and is used to simulate how the following affect wind flow characteristics: (1) an isolated building, (2) urban canyons, (3) an irregular shaped building cluster, and (4) a real urban neighborhood. The numerical results are compared with previous researchers' results and with wind tunnel experiment results. It is demonstrated that the geometries and the distribution of urban buildings affect airflow greatly, and some examples of this include a changing of the vortices behind buildings and a "channeling effect". Although the mean air flows are well simulated by the standard $k-{\varepsilon}$ models, it is important to pay attention to certain discrepancies when results from the standard $k-{\varepsilon}$ models are used in design or policy decisions: The standard $k-{\varepsilon}$ model may overestimate the turbulence energy near the frontal side of buildings, may underestimate the range of high turbulence energy in urban areas, and may omit some important information (such as the reverse air flows above the building roofs). In ideal inflow conditions, the effects of the heights of buildings may be underestimated, when compared with field observations.

One-Year Continuous Measurement of Outdoor Radon Progeny Concentration in Beijing Area

  • Zhang, Lei;Wang, Yunxiang;Guo, Qiuju
    • Journal of Radiation Protection and Research
    • /
    • 제45권3호
    • /
    • pp.95-100
    • /
    • 2020
  • Background: Compared with reported data of radon concentration, data of radon progeny concentration is limited in general, especially in outdoor environment. Materials and Methods: To know both the level and the variation of radon progeny concentration in outdoor environment in Beijing area, one-year continuous measurement with a cycle of 60 minutes was carried out by a step-advanced filter (SAF) monitor for radon progeny measurement. The observation site was located in a park in Eastern Beijing area, and the observation period was from October 17, 2018 to September 29, 2019. Results and Discussion: The equivalent equilibrium concentration (EEC) of radon progeny varies from 0.7 to 19.1 Bq·m-3, with an annual average of 4.9 ± 2.7 Bq·m-3. A clear diurnal variation of EEC, higher in the early morning and lower in the late afternoon, is observed due to the high sensitivity of the SAF monitor. Conclusion: Vertical convection of atmospheric boundary layer is thought to be the main reason of this phenomenon. For annual variation, the lowest monthly average EEC appeared in April, while the highest appeared in November, which might attribute to the atmospheric stability in different seasons.

Measurement of electron density of atmospheric pressure Ar plasma jet by using Michelson interferometer

  • Lim, Jun-Sup;Hong, Young June;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.195.1-195.1
    • /
    • 2016
  • Currently, as Plasma application is expanded to the industrial and medical industrial, low temperature plasma applications became important. Especially in medical and biology, many researchers have studied about generated radical species in atmospheric pressure low temperature plasma directly adapted to human body. Therefore, so measurement their plasma parameter is very important work and is widely studied all around world. One of the plasma parameters is electron density and it is closely relative to radical production through the plasma source. some kinds of method to measuring the electron density are Thomson scattering spectroscopy and Millimeter-wave transmission measurement. But most methods have very expensive cost and complex configuration to composed of experiment system. We selected Michelson interferometer system which is very cheap and simple to setting up, so we tried to measuring electron density by laser interferometer with laser beam chopping module for measurement of temporal phase difference in plasma jet. To measuring electron density at atmospheric pressure Ar plasma jet, we obtained the temporal phase shift signal of interferometer. Phase difference of interferometer can occur because of change by refractive index of electron density in plasma jet. The electron density was able to estimate with this phase difference values by using physical formula about refractive index change of external electromagnetic wave in plasma. Our guiding laser used Helium-Neon laser of the centered wavelength of 632 nm. We installed chopper module which can make a 4kHz pulse laser signal at the laser front side. In this experiment, we obtained more exact synchronized phase difference between with and without plasma jet than reported data at last year. Especially, we found the phase difference between time range of discharge current. Electron density is changed from Townsend discharge's electron bombardment, so we observed the phase difference phenomenon and calculated the temporal electron density by using phase shift. In our result, we suggest that the electron density have approximately range between 1014~ 1015 cm-3 in atmospheric pressure Ar plasma jet.

  • PDF

A comparative study on the degradation of methyl orange, methylene blue and congo red by atmospheric pressure jet

  • Park, Ji Hoon;Yusupov, Maksudbek;Lingamdinne, Lakshmi Prasanna;Koduru, Janardhan Reddy;Bogaerts, Annemie;Choi, Eun Ha;Attri, Pankaj
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.190.1-190.1
    • /
    • 2016
  • One of the most serious problems faced by billions of people today is the availability of fresh water. According to statistics, 15% of the world's total output of dye products is discharged into the environment as dye wastewater, which seriously pollutes groundwater resources. For the treatment of chemically and biologically contaminated water the advanced oxidation processes (AOPs) shows the promising action. The main advantage with AOPs is the ability to degrade the organic pollutants to $CO_2$ and $H_2O$. For this degradation process the AOPs generation of powerful and non-selective radicals that may oxidize majority of the organic pollutants present in the water body. To generate the various reactive chemical species such as radicals (${\bullet}OH$, ${\bullet}H$, ${\bullet}O$, ${\bullet}HO_2$) and molecular species ($H_2O_2$, $H_2$, $O_2$) in large amount in water, we have used the atmospheric pressure plasma. Among the reactive and non-reactive species, the hydroxyl radical (${\bullet}OH$) plays important role due to its higher oxidation potential (E0: 2.8 V). Therefore, in this work we have checked the degradation of various dyes such as methyl orange, methylene blue and congo red using different type of atmospheric pressure plasma sources (Indirect jet and direct jet). To check the degradation we have used the UV-visible spectroscopy, HPLC and LC-MS spectroscopy. Further, to estimate role of ${\bullet}OH$ on the degradation of dyes we have studied the molecular dynamic simulation.

  • PDF

Nonlinear Kalman filter bias correction for wind ramp event forecasts at wind turbine height

  • Xu, Jing-Jing;Xiao, Zi-Niu;Lin, Zhao-Hui
    • Wind and Structures
    • /
    • 제30권4호
    • /
    • pp.393-403
    • /
    • 2020
  • One of the growing concerns of the wind energy production is wind ramp events. To improve the wind ramp event forecasts, the nonlinear Kalman filter bias correction method was applied to 24-h wind speed forecasts issued from the WRF model at 70-m height in Zhangbei wind farm, Hebei Province, China for a two-year period. The Kalman filter shows the remarkable ability of improving forecast skill for real-time wind speed forecasts by decreasing RMSE by 32% from 3.26 m s-1 to 2.21 m s-1, reducing BIAS almost to zero, and improving correlation from 0.58 to 0.82. The bias correction improves the forecast skill especially in wind speed intervals sensitive to wind power prediction. The fact shows that the Kalman filter is especially suitable for wind power prediction. Moreover, the bias correction method performs well under abrupt weather transition. As to the overall performance for improving the forecast skill of ramp events, the Kalman filter shows noticeable improvements based on POD and TSS. The bias correction increases the POD score of up-ramps from 0.27 to 0.39 and from 0.26 to 0.38 for down-ramps. After bias correction, the TSS score is significantly promoted from 0.12 to 0.26 for up-ramps and from 0.13 to 0.25 for down-ramps.

A simple data assimilation method to improve atmospheric dispersion based on Lagrangian puff model

  • Li, Ke;Chen, Weihua;Liang, Manchun;Zhou, Jianqiu;Wang, Yunfu;He, Shuijun;Yang, Jie;Yang, Dandan;Shen, Hongmin;Wang, Xiangwei
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2377-2386
    • /
    • 2021
  • To model the atmospheric dispersion of radionuclides released from nuclear accident is very important for nuclear emergency. But the uncertainty of model parameters, such as source term and meteorological data, may significantly affect the prediction accuracy. Data assimilation (DA) is usually used to improve the model prediction with the measurements. The paper proposed a parameter bias transformation method combined with Lagrangian puff model to perform DA. The method uses the transformation of coordinates to approximate the effect of parameters bias. The uncertainty of four model parameters is considered in the paper: release rate, wind speed, wind direction and plume height. And particle swarm optimization is used for searching the optimal parameters. Twin experiment and Kincaid experiment are used to evaluate the performance of the proposed method. The results show that the proposed method can effectively increase the reliability of model prediction and estimate the parameters. It has the advantage of clear concept and simple calculation. It will be useful for improving the result of atmospheric dispersion model at the early stage of nuclear emergency.