• 제목/요약/키워드: Atmospheric light

검색결과 369건 처리시간 0.024초

광촉매 플라즈마 반응에 의한 몇가지 VOCs의 제거에 관한 연구 (Study on the Decomposition of Some Volatile Organic Compounds by Photocatalyst Plasma Reaction)

  • 허경욱
    • 한국대기환경학회지
    • /
    • 제16권4호
    • /
    • pp.373-380
    • /
    • 2000
  • A new type of photocatalyst plasma air purification filter for decomposition of some VOCs has been developed. The photocatalyst plasma air purification filter employs the pulsed discharge plasma as an energy source of TiO2. photocatalyst instead of UV light. In closed room(2m3) test removal efficiency of some VOCs was 80∼100% in 15∼24 hours. In the initial step of phptocatalyst plasma reaction. Acetone and Nitromethane etc were detected. But they were completely oxidized to CO2 and H2O.

  • PDF

MP Lidar를 이용한 대기중 에어로졸 분포 관측 (Observation of Atmospheric Aerosol Distribution Using MP Lidar)

  • 이태정;김석철;조성주;윤정임;김현섭;백준기;차형기;김덕현
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2000년도 추계학술대회 논문집
    • /
    • pp.354-355
    • /
    • 2000
  • 대기환경문제는 관련 환경정책의 강화와 각종 대책에도 불구하고 그 심각성이 날로 증가하고 있다. 이러한 문제를 해결하기 위해 오염현상에 대한 정확한 측정, 분석과 이를 토대로 한 효율적인 대기오염 대책 수립 및 시행이 요구된다. 그러나 기존의 측정방법으로는 대기오염변화를 신속하게 측정하거나 또는 지상 수십 km에 달하는 광범위한 영역의 농도분포를 측정하는 것이 불가능하다. 최근 들어 실시간 측정이 가능한 원격측정 방법 중의 하나인 라이다 (Light Detection And Ranging; LIDAR)에 대한 관심이 고조되면서 여러 나라에서 급속히 발전하고 있다. (중략)

  • PDF

실내 스모그 챔버 연구 II: 광도가 대기 에어로졸의 생성에 미치는 영향 (Indoor Smog Chamber Study: Effect of Light Intensity on the Formation of Atmospheric Aerosols)

  • 김민철;박주연;배귀남;김용표;문길주
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2002년도 춘계학술대회 논문집
    • /
    • pp.169-170
    • /
    • 2002
  • 스모그는 대기오염으로 인해 나타나는 대표적인 오염 현상이다. 스모그는 시정을 감소시키고, 눈ㆍ코ㆍ호흡기 등을 자극하여 인체의 건강에 나쁜 영향을 미친다. 스모그 현상은 주로 바람이 약하고 지표부근의 기온이 역전하는 특정한 기상상태에서 대기 중 가스와 입자간의 반응에 의해 여러 경로론 거쳐 생성된 에어로졸이 증가하여 나타난다. 최근 자동차 수의 급속한 증가와 휘발성 유기화합물질 (volatile organic compounds, VOCs)의 사용으로 인하여 서울 지역에서 스모그가 발생하는 빈도가 많아지고 있다. (중략)

  • PDF

Effects of Ozone on $CO_2$ Assimilation and PSII Function in Two Tobacco Cultivars with Different Sensitivities

  • Yun, Myoung-Hui
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제22권E2호
    • /
    • pp.89-98
    • /
    • 2006
  • Two tobacco cultivars (Nicotiana tabacum L.), Bel-B and Bel-W3, tolerant and sensitive to ozone, respectively, were grown in a greenhouse supplied with charcoal filtered air and exposed to 200 ppb ozone for 4 hr. Effects on chlorophyll fluorescence, net photosynthesis, and stomatal conductance are described. Quantum yield was calculated from chlorophyll fluorescence and the initial slope of the assimilation-light curve measured by the gas exchange method. Only the sensitive cultivar, Bel-W3, developed visual injury symptoms on up to 50% of the $5^{th}$ leaf. The maximum net photosynthetic rate of ozone-treated plants was reduced 40% compared to control plants immediately after ozone fumigation in the tolerant cultivar; however, photosynthesis recovered by 24 hr post fumigation and remained at the same level as control plants. On the other hand, ozone exposure reduced maximum net photosynthesis up to 50%, with no recovery, in the sensitive cultivar apparently causing permanent damage to the photosystem. Reductions in apparent quantum efficiency, calculated from the assimilation-light curve, differed between cultivars. Bel-B showed an immediate depression of 14% compared to controls, whereas, Bel-W3 showed a 27% decline. Electron transport rate (ETR), at saturating light intensity, decreased 58% and 80% immediately after ozone treatment in Bel-B and Bel-W3, respectively. Quantum yield decreased 28% and 36% in Bel-B and Bel-W3, respectively. It can be concluded that ozone caused a greater relative decrease in linear electron transport than maximum net photosynthesis, suggesting greater damage to PSII than the carbon reduction cycle.

헬륨 대기압 유전체 격벽 방전기의 타운젠트-글로우 방전 모드 전이 연구 (Observation of Discharge Mode Transient from Townsend to Glow at Breakdown of Helium Atmospheric Pressure Dielectric Barrier Discharge)

  • 배병준;김남균;윤성영;신준섭;김곤호
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.26-31
    • /
    • 2016
  • The Townsend to glow discharge mode transition was investigated in the dielectric barrier discharge (DBD) helium plasma source which was powered by 20 kHz / $4.5 kV_{rms}$ high voltage at atmospheric pressure. The spatial profile of the electric field strength at each modes was measured by using the intensity ratio method of two helium emission lines (667.8 nm ($3^1D{\rightarrow}2^1P$) and 728.1 nm ($3^1S{\rightarrow}2^1P$)) and the Stark effect. ICCD images were analyzed with consideration for the electric field property. The Townsend discharge (TD) mode at the initial stage of breakdown has the light emission region located in the vicinity of the anode. The electric field of the light emitting region is close to the applied field in the system. Immediately, the light emitting region moves to the cathode and the discharge transits to the glow discharge (GD) mode. This mode transition can be understood with the ionization wave propagation. The electric field of the emitting region of GD near cathode is higher than that of TD near anode because of the cathode fall formation. This observation may apply to designing a DBD process system and to analysis of the process treatment results.

다파장 Dual-spot Aethalometer를 이용한 갈색탄소의 광흡수계수 평가 (Estimation of Light Absorption by Brown Carbon Particles using Multi-wavelength Dual-spot Aethalometer)

  • 유근혜;유재명;박승식
    • 한국대기환경학회지
    • /
    • 제34권2호
    • /
    • pp.207-222
    • /
    • 2018
  • In this study, light absorption of carbonaceous species in $PM_{2.5}$ was investigated using a dual-spot 7-wavelength Aethalometer(model AE33) with 1-min time interval between January 01 and September 30, 2017 at an urban site of Gwangju. During the study period, two Asian dust (AD) events occurred in April (AD I) and May (AD II), respectively, during which light absorption in total suspended particles was observed. Black carbon (BC) was the dominant light absorbing aerosol component at all wavelengths over the study period. Light absorption coefficients by aerosol particles were found to have 2.7~3.3 times higher at 370 nm than at 880 nm. This would be attributed to light absorbing organic aerosols, which is called brown carbon (BrC), as well as BC as absorbing agents of aerosol particles. Monthly average absorption ${{\AA}}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950nm}$) calculated over wavelength range of 370~950 nm ranged from 1.10 to 1.35, which was lower than the $AAE_{370-520nm}$ values ranging from 1.19~1.68 that was enhanced due to the presence of BrC. The estimated $AAE_{370-660nm}$ of BrC ranged from 2.2 to 7.5 with an average of 4.22, which was fairly consistent to the values reported by previous studies. The BrC absorption at 370 nm contributed 10.4~28.4% to the total aerosol absorption, with higher contribution in winter and spring and lower in summer. Average $PM_{10}$ and $PM_{2.5}$ concentrations were $108{\pm}36$ and $24{\pm}14{\mu}g/m^3$ during AD I, respectively, and $164{\pm}66$ and $43{\pm}26{\mu}g/m^3$ during AD II, respectively, implying the greater contribution of local pollution and/or regional pollution to $PM_{2.5}$ during the AD II. BC concentration and aerosol light absorption at 370 nm were relatively high in AD II, compared to those in AD I. Strong spectral dependence of aerosol light absorption was clearly found during the two AD events. $AAE_{370-660nm}$ of both light absorbing organic aerosols and dust particles during the AD I and II was $4.8{\pm}0.5$ and $6.2{\pm}0.7$, respectively. Higher AAE value during the AD II could be attributed to mixed enhanced urban pollution and dust aerosols. Absorption contribution by the light absorbing organic and dust aerosols estimated at 370 nm to the total light absorption was approximately 19% before and after the AD events, but it increased to 32.9~35.0% during the AD events. In conclusion, results from this study support enhancement of the aerosol light absorption due to Asian dust particles observed at the site.

SW Lyncis-Advances and Questions

  • Kim, Chun-Hwey;Kim, Ho-Il;Yoon, Tae-Seog;Han, Won-Yong;Lee, Jae-Woo;Lee, Chung-Uk;Kim, Jin-Hyung;Koch, Robert H.
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권4호
    • /
    • pp.263-278
    • /
    • 2010
  • Many filtered CCD measures form the basis of six new light curves of the eclipsing system SW Lyn. From these measures and additional observations for eclipse timing, 47 new times of minimum light over the time-interval of about 13 years have been calculated. The complex period variability can be sorted into a linear period improvement with 5.8-year and 33.9-year periodic terms. The shorter cyclic term of these is ascribed to a cool companion of the eclipsing pair but the longer one has no testable interpretation at present. The new light curves are synthesized by the 2003 version of the Wilson-Devinney differential corrections computer code. The results incorporate a source of "third light" which comes from the cool companion star that had been identified by the cycling of the period of the eclipsing pair and also had previously been identified spectroscopically. There is a measure of satisfaction with current understanding of the SW Lyn eclipsing system because of consistent syntheses of all historical light curves. This agreeable convergence, however, comes partly at the expense of an unanticipated temperature of the hot star and of a photospheric spot that has no obvious basis in the detached character modeled for the binary. We offer predictions of changes in the stellar parameters if the modeled detached-configuration should be wrong. The SW Lyn stellar system is still difficult to understand.

Vertical Change in Extinction and Atmospheric Particle Size in the Boundary Layers over Beijing: Balloon-borne Measurement

  • Chen, Bin;Shi, Guang-Yu;Yamada, Maromu;Zhang, Dai-Zhou;Hayashi, Masahiko;Iwasaka, Yasunobu
    • Asian Journal of Atmospheric Environment
    • /
    • 제4권3호
    • /
    • pp.141-149
    • /
    • 2010
  • Aerosol size and number concentration were observed in the atmospheric boundary layer over Beijing (from near the ground to 1,200 m) on March 15 (a clear day) and 16 (a dusty day), 2005. The results were further compared with lidar measurements in order to understand the dependency of extinction on the particle size distribution and their vertical changes. The boundary layer atmosphere was composed of several sub-layers, and a dry air layer appeared between 400 and 1,000 m under the influence of dust event. In this dry air layer, the concentration of the fine-mode particles (diameter smaller than $1.0\;{\mu}m$) was slightly lower than the value on the clear day, while the concentration of coarse-mode particles (diameter larger than $1.0\;{\mu}m$) was remarkably higher than that on the clear day. This situation was attributed to the inflow of an air mass containing large amounts of Asian dust particles and a smaller amount of fine-mode particles. The results strongly suggest that the fine-mode particles affect light extinction even in the dusty atmosphere. However, quantitatively the relation between extinction and particle concentration is not satisfied under the dusty atmospheric conditions since laser beam attenuates in the atmosphere with high concentration of particles. Laser beam attenuation effect becomes larger in the relation between extinction and coarse particle content comparing the relation between extinction and fine particle content. To clarify this problem technically, future in situ measurements such as balloon-borne lidar are suggested. Here extinction was measured at 532 nm wavelength. Measurements of extinction at other wavelengths are desired in the future.

Analysis of the Influence of Atmospheric Turbulence on the Ground Calibration of a Star Sensor

  • Xian Ren;Lingyun Wang;Guangxi Li;Bo Cui
    • Current Optics and Photonics
    • /
    • 제8권1호
    • /
    • pp.38-44
    • /
    • 2024
  • Under the influence of atmospheric turbulence, a star's point image will shake back and forth erratically, and after exposure the originally small star point will spread into a huge spot, which will affect the ground calibration of the star sensor. To analyze the impact of atmospheric turbulence on the positioning accuracy of the star's center of mass, this paper simulates the atmospheric turbulence phase screen using a method based on a sparse spectrum. It is added to the static-star-simulation device to study the transmission characteristics of atmospheric turbulence in star-point simulation, and to analyze the changes in star points under different atmospheric refractive-index structural constants. The simulation results show that the structure function of the atmospheric turbulence phase screen simulated by the sparse spectral method has an average error of 6.8% compared to the theoretical value, while the classical Fourier-transform method can have an error of up to 23% at low frequencies. By including a simulation in which the phase screen would cause errors in the center-of-mass position of the star point, 100 consecutive images are selected and the average drift variance is obtained for each turbulence scenario; The stronger the turbulence, the larger the drift variance. This study can provide a basis for subsequent improvement of the ground-calibration accuracy of a star sensitizer, and for analyzing and evaluating the effect of atmospheric turbulence on the beam.

The Study of DNA Damage Induced by Atmospheric Pressure Plasma Jet and Their Mechanisms

  • Park, Yeunsoo;Song, Mi-Young;Yoon, Jung-Sik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.155.1-155.1
    • /
    • 2013
  • The goals of this study are to elucidate the plasma effects on DNA molecules to apply some plasma based applications and also to find out the mechanisms of plasma-induced DNA damage in biomolecule. Nonthermal atmospheric pressure plasma has much potential for medical, agricultural and food applications for the future. The atmospheric pressure plasma jet (APPJ) contains radicals, charged particles, low energy electrons, excited molecules and UV light. It has been started doing experiments using APPJ at the early 21th. And some recent results showed that APPJ has a possibility to apply to new fields like mentioned above. But it is kind of at the very early stages of plasma based application. It is definitely necessary much of theoretical and experimental studies to further understanding to use nonthermal atmospheric pressure plasma in biomedical, agriculture and food parts. Here we introduce a new experimental system to study plasma effects on biomolecules. And we will show some recent results of LEE-induced DNA damage using electron irradiation apparatus under ultra-high vacuum.

  • PDF