A 3D sonic anemometer has been installed at Yongpyong alpine slope since Oct. 23th 2014 to observe the slope winds and to analyze turbulent characteristics with the change in surface cover (grass and snow) and the synoptic wind strength. Eddy covariance method has been applied to calculate the turbulent quantity after coordinate transformation of a planar-fit rotation. We have carefully selected 3 good episodes in the winter season (23 October 2014 to 28 February 2015) for each category (9 days in total), such as grass and snow covers in case of weak synoptic wind condition, and grass cover of strong synoptic wind. The diurnal variations of the slope winds were well developed like the upslope wind in the daytime and downslope wind in the nighttime for both surface covers (grass and snow) in the weak synoptic forcing, when accordingly both heat and momentum fluxes significantly increased in the daytime and decreased in the nighttime. Meanwhile, diurnal variation of heat flux was not present on the snow cover probably in associated with significant fraction of sunlight reflection due to high albedo especially during the daytime in comparison to those on the grass cover. In the strong synoptic regime, the most dominant feature at Yongpyong, only the southeasterly downslope winds were steadily generated irrespective of day and night with significant increases in momentum flux and turbulent kinetic energy as well, which could suggest that local circulations are suppressed by the synoptic scale forcing. In spite of only one season analysis applied to the limited domain, this kind of an observation-based study will provide the basis for understanding of the local wind circulation in the complex mountain domain such as Gangwon in Korea.
As an attempt to improve fog predictability at Incheon International Airport (IIA) we couple the 3D weather forecasting model currently operational in Korea Meteorological Administration (regional Unified Model, UM_RE) with a 1D turbulence model (PAFOG). The coupling is done by extracting the meteorological data from the 3D model and properly inserting them in the PAFOG model as initial conditions and external forcing. The initial conditions include surface temperature, 2 m temperature and dew point temperature, geostrophic wind at 850 hPa and vertical profiles of temperature and dew point temperature. Moisture and temperature advections are included as external forcing and updated every hr. To validate the performance of the coupled system, simulation results of the coupled system are compared to those of the 3D model alone for the 22 sea fog cases observed over the Yellow Sea. Three statistical indices, i.e., Root Mean Square Error (RMSE), linear correlation coefficient (R) and Critical Success Index (CSI), are examined, and they all indicate that the coupled system performs better than the 3D model alone. These are certainly promising results but more improvement is required before the coupled system can actually be used as an operational fog forecasting model. For the RMSE, R, and CSI values for the coupled system are still not good enough for operational fog forecast.
This study investigates the characteristics of the Gross Moist Stability (GMS) over the tropics. The GMS summarizes the relationship between large-scale entropy forcing due to radiation and surface fluxes and the response of smaller-scale convection. The GMS is able to explain both to where moist entropy is advected by the atmospheric circulation and how deep the moisture flux convergence is in the tropical region. In the deep convective region, positive GMS appears over the warm pool region due to the strong column-integrated moisture convergence and the ensuing export of moist entropy to the environment. The vertical advection of moist entropy dominates over the horizontal advection in this region. Meanwhile, over the eastern tropical ITCZ region, which is characterized by shallow convective area, import of moist entropy by horizontal winds is dominant compared to the vertical moist entropy advection. Future changes in the GMS are also examined using the 22 CMIP5 model simulations. A decrease in the GMS appears widely across the tropics, but its increase occurs over the western-central equatorial Pacific. It is evident that the increased GMS region corresponds to an increased region of precipitation, implying that strengthened convection in the future due to increased entropy forcing exports the enhanced moist energy to stabilize the environment.
The spatial and temporal variations in radiative forcing (RF) and mean temperature changes of greenhouse gases (GHGs), such as $CO_2$, $CH_4$, and $N_2O$, were analyzed at urban center (Yeon-dong) and background sites (Gosan) on Jeju Island during 2010~2015, based on a modeling approach (i.e., radiative transfer model). Overall, the RFs and mean temperature changes of $CO_2$ at Yeon-dong during most years (except for 2014) were estimated to be higher than those at Gosan. This might be possibly because of its higher concentrations at Yeon-dong due to relatively large energy consumption and small photosynthesis and also the difference in radiation flux due to the different input condition (e.g., local time and geographic coordinates of solar zenith angle) in the model. The annual mean RFs and temperature changes of $CO_2$ were highest in 2015 ($2.41Wm^{-2}$ and 1.76 K) at Yeon-dong and in 2013 ($2.22Wm^{-2}$ and 1.62 K) at Gosan (except for 2010 and 2011). The maximum monthly/seasonal mean RFs and temperature changes of $CO_2$ occurred in spring (Mar. and/or Apr.) or winter (Jan. and/or Feb.) at the two sites during the study period, whereas the minimum RFs and temperature changes in summer (Jun.-Aug.). In the case of $CH_4$ and $N_2O$, their impacts on the RF and mean temperature changes were very small (an order of magnitude lower) compared to $CO_2$. The spatio-temporal differences in these RF values of GHGs might primarily depend on the atmospheric profile (e.g., ozone profile), surface albedo, local time (or solar zenith angle), as well as their mass concentrations.
Park, Yeon-Hee;Song, Sang-Keun;Kang, Chang-Hee;Song, Jung-Min
Journal of Korean Society for Atmospheric Environment
/
v.33
no.5
/
pp.458-472
/
2017
The optical properties and direct aerosol radiative forcing (DARF) of different aerosol components in $PM_{2.5}$ (water-soluble, insoluble, black carbon (BC), and sea-salt) were estimated using the hourly resolution data measured at Aewol intensive air monitoring site on Jeju Island during 2013, based on a modeling approach. In general, the water-soluble component was predominant over all other components with respect to its impact on the optical properties(except for absorbing BC) and DARF. The annual mean aerosol optical depth (AOD) at 500 nm for the water-soluble component was $0.14{\pm}0.14$ ($0.04{\pm}0.01$ for BC). The total DARF at the surface ($DARF_{SFC}$) and top of the atmosphere ($DARF_{TOA}$), and in the atmosphere ($DARF_{ATM}$) for most aerosol components(except for sea-salt) during the daytime were highest in spring and lowest in fall and/or summer. The maximum $DARF_{SFC}$ of most aerosol components occurred around noon (12:00~14:00 LST) during all seasons, while the maximum $DARF_{TOA}$ occurred in the afternoon (13:00~16:00 LST) during most seasons (except for spring). In addition, the estimated $DARF_{SFC}$ and $DARF_{ATM}$ of the water-soluble component were -20 to $-59W/m^2$ and +3.5 to $+14W/m^2$, respectively, while those of BC were -18 to $-29W/m^2$ and +23 to $+37W/m^2$, respectively.
Kim, Jhoon;Cho, Hi-Ku;Lee, Yun-Gon;Oh, Sung Nam;Baek, Seon-Kyun
Atmosphere
/
v.15
no.2
/
pp.101-118
/
2005
Atmospheric ozone changes temporally and spatially according to both anthropogenic and natural causes. It is essential to quantify the natural contributions to total ozone variations for the estimation of trend caused by anthropogenic processes. The aims of this study are to understand the intrinsic natural variability of long-term total ozone changes and to estimate more reliable ozone trend caused by anthropogenic ozone-depleting materials. For doing that, long-term time series for Seoul of monthly total ozone which were measured from both ground-based Dobson Spectrophotometer (Beck #124)(1985-2004) and satellite TOMS (1979-1984) are analyzed for selected period, after dividing the whole period (1979~2004) into two periods; the former period (1979~1991) and the latter period (1992~2004). In this study, ozone trends for the time series are calculated using multiple regression models with explanatory natural oscillations for the Arctic Oscillation(AO), North Atlantic Oscillation(NAO), North Pacific Oscillation(NPO), Pacific Decadal Oscillation(PDO), Quasi Biennial Oscillation(QBO), Southern Oscillation(SO), and Solar Cycle(SC) including tropopause pressure(TROPP). Using the developed models, more reliable anthropogenic ozone trend is estimated than previous studies that considered only QBO and SC as natural oscillations (eg; WMO, 1999). The quasi-anthropogenic ozone trend in Seoul is estimated to -0.12 %/decade during the whole period, -2.39 %/decade during the former period, and +0.10 %/decade during the latter period, respectively. Consequently, the net forcing mechanism of the natural oscillations on the ozone variability might be noticeably different in two time intervals with positive forcing for the former period (1979-1991) and negative forcing for the latter period (1992-2004). These results are also found to be consistent with those analyzed from the data observed at ground stations (Sapporo, Tateno) of Japan. In addition, the recent trend analyses for Seoul show positive change-in-trend estimates of +0.75 %/decade since 1997 relative to negative trend of -1.49 %/decade existing prior to 1997, showing -0.74 %/decade for the recent 8-year period since 1997. Also, additional supporting evidence for a slowdown in ozone depletion in the upper stratosphere has been obtained by Newchurch et al.(2003).
Lower thermospheric winds are forced primarily by non-uniform solar heating, atmospheric tides and other waves coming from below, and energy and momentum forcing associated with high-latitude magnetosphere-ionosphere coupling, particularly ion drag and Joule heating. To understand the physical processes that control the thermospheric dynamics, we quantify the momentum forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system and examine the resulting momentum balance with the aid of the Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) developed by the National Center for Atmospheric Research. (omitted)
Bhaskar, TVS Udaya;Swain, Debadatta;Ravichandran, M
Ocean Science Journal
/
v.43
no.3
/
pp.147-152
/
2008
The seasonal variability of sonic layer depth (SLD) in the central Arabian Sea (CAS) (0 to $25^{\circ}N$ and $62-66^{\circ}E$) was studied using the temperature and salinity (T/S) profiles from Argo floats for the years 2002-2006. The atmospheric forcing responsible for the observed changes was explored using the meteorological data from NCEP/NCAR and Quickscat winds. SLD was obtained from sound velocity profiles computed from T/S data. Net heat flux and wind forcing regulated SLD in the CAS. Up-welling and down-welling (Ekman dynamics) associated with the Findlater Jet controlled SLD during the summer monsoon. While in winter monsoon, cooling and convective mixing regulated SLD in the study region. Weak winds, high insolation and positive net heat flux lead to the formation of thin, warm and stratified sonic layer during pre and post summer monsoon periods, respectively.
Journal of Korean Society for Atmospheric Environment
/
v.25
no.5
/
pp.392-401
/
2009
Ice-crystal clouds observation was conducted using a GIST/ADEMRC Multi-wavelength Raman lidar system in order to measure vertical profile and optical depth at Gwangju ($35^{\circ}$10'N, $126^{\circ}$53'E), Korea in December 2002, and March and April 2003. Ice-crystal clouds at high altitude can be distinguished from atmospheric aerosols by high depolarization ratio and high altitude. Ice-crystal clouds were observed at 5~12 km altitudes with a high depolarization ratio from 0.2 to 0.5. Optical depth of ice-crystal clouds had varied from 0.14 to 1.81. The radiative effect of observed ice-crystal cloud on climate system was estimated to be negative net flux in short wavelength (0.25~$4.0{\mu}m$) and positive net flux in short+long wavelength (0.25~$100{\mu}m$) at top of the atmosphere. Net flux by ice-crys tal cloud per unit optical depth was comparable to that of Asian dust.
Three-dimensional distributions of longwave radiation flux for the April-September 1998 period are generated from radiative transfer calculations using the GEWEX Asian Monsoon Experiment (GAME) reanalysis temperature and humidity profiles and International Satellite Cloud Climatology Project (ISCCP) cloudiness as inputs to understand the effect of cloud radiative forcing in the monsoon season. By subtracting the heating of the clear atmosphere from the cloudy radiative heating, cloud-induced atmospheric radiative heating has been obtained. Emphasis is placed on the impact of horizontal gradients of the cloud-generated radiative heating on the Asian monsoon. Cloud-induced heating exhibits its maximum heating areas within the Indian Ocean and minimum heating over the Tibetan Plateau, which establishes the north-south oriented differential heating gradient. Considering that the differential heating is a ultimate source generating the atmospheric circulation, the cloud-induced heating gradient established between the Indian Ocean and the Plateau can enhance the strength of the north-south Hadley-type monsoon circulation. Cooling at cloud top and warming at cloud bottom, which are the vertical distributions of cloud-induced heating, can exert on the monsoon circulation by altering the atmospheric stability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.