• 제목/요약/키워드: Atmospheric effects

검색결과 1,156건 처리시간 0.032초

Physicochemical Quality Changes in Chinese Cabbage with Storage Period and Temperature: A Review

  • Shim, Joon-Yong;Kim, Do-Gyun;Park, Jong-Tae;Kandpal, Lalit Mohan;Hong, Soon-jung;Cho, Byoung-Kwan;Lee, Wang-Hee
    • Journal of Biosystems Engineering
    • /
    • 제41권4호
    • /
    • pp.373-388
    • /
    • 2016
  • Background: Recent inquiries into high-quality foods have discussed the importance of the functional aspects of foods, in addition to traditional quality indicators such as color, firmness, weight, trimming loss, respiration rate, texture, and soluble solid content. Recently, functional Chinese cabbage, which makes up a large portion of the vegetables consumed in Korea, has been identified as an anticancer treatment. However, the investigation of practical issues, such as the effects of storage conditions on quality indicators (including functional compounds), is still limited. Purpose: We reviewed various studies on variations in the quality indicators and functional compounds of Chinese cabbage in response to different storage environments, focusing on storage temperature and storage period. In particular, we emphasized the effect of storage temperature and storage period on glucosinolate (GSL) levels, in order to provide guidelines for optimizing storage environments to maximize GSLs. Additionally, we used response surface methodology to propose experimental designs for future studies exploring the optimal storage conditions for enhancing GSL contents. Review: Large variations in quality indicators were observed depending on the cultivar, the type of storage, the storage conditions, and the harvest time. In particular, GSL content varied with storage conditions, indicating that either low temperatures or adequate air composition by controlled atmospheric storage may preserve GSL levels, as well as prolonging shelf life. Even though genetic and biochemical approaches are preferred for developing functional Chinese cabbage, it is important to establish a practical method for preserving quality for marketability; a prospective study into optimal storage conditions for preserving functional compounds (which can be applied in farms), is required. This may be achievable with the comprehensive meta-analysis of currently published data introduced in this review, or by conducting newly designed experiments investigating the relationship between storage conditions and the levels of functional compounds.

섬유코팅업종사 근로자에서 디메틸포름아미드의 폭로에 의한 생물학적 모니터링에 영향을 미치는 인자 (Influencing Factors that Affect the Biological Monitoring of Workers Exposed to N,N-Dimethylformamide in Textile Coating Factories)

  • 정인성;김종환;최상국;배종연;이미영
    • Journal of Preventive Medicine and Public Health
    • /
    • 제39권2호
    • /
    • pp.171-176
    • /
    • 2006
  • Objectives : The objective of this study is to assess the factors influencing biological monitoring of textile coating factory workers exposed to N,N-dimethylformamide(DMF). Methods : We studied 35 workers who were occupationally exposed to DMF from 9 textile coating factories. The study was carried out in two phases; summer and winter. While air concentration of DMF, temperature and humidity were assessed in order to monitor the atmospheric conditions, biological monitoring was done to determine the internal dose by analyzing the N-methylformamide(NMF) collected from urine at the beginning and end of the shift. Questionnaires and medical surveillance were also obtained during the two phases. Results : Median air concentrations of DMF in winter and summer were 1.85 ppm and 2.78 ppm respectively. Also the difference between the urinary NMF concentration at the beginning and end of the shift $({\Delta}NMF)$ was always significant in each season (P < 0.001). The correlations between log DMF in air, log end-of-shift urinary NMF (r=0.555, P < 0.001) and log ${\Delta}NMF$ (r = 0.444, P < 0.001) was statistically significant in summer. The temperature, humidity, a shift system and different styles of clothing worn were significantly different during the two phases. In a multivariate analysis, temperature and the concentration of DMF in the air were the main factors influencing biological monitoring of textile coating factory workers. Conclusions : Concerning more comprehensive prevention measures to reduce exposure for those workers occupationally exposed to DMF, dermal exposure conditions such as temperature and humidity together with the air concentration of DMF should be assessed and biological monitoring is necessary to reduce adverse health effects, especially during the summer.

Capacity assessment of existing corroded overhead power line structures subjected to synoptic winds

  • Niu, Huawei;Li, Xuan;Zhang, Wei
    • Wind and Structures
    • /
    • 제27권5호
    • /
    • pp.325-336
    • /
    • 2018
  • The physical infrastructure of the power systems, including the high-voltage transmission towers and lines as well as the poles and wires for power distribution at a lower voltage level, is critical for the resilience of the community since the failures or nonfunctioning of these structures could introduce large area power outages under the extreme weather events. In the current engineering practices, single circuit lattice steel towers linked by transmission lines are widely used to form power transmission systems. After years of service and continues interactions with natural and built environment, progressive damages accumulate at various structural details and could gradually change the structural performance. This study is to evaluate the typical existing transmission tower-line system subjected to synoptic winds (atmospheric boundary layer winds). Effects from the possible corrosion penetration on the structural members of the transmission towers and the aerodynamic damping force on the conductors are evaluated. However, corrosion in connections is not included. Meanwhile, corrosion on the structural members is assumed to be evenly distributed. Wind loads are calculated based on the codes used for synoptic winds and the wind tunnel experiments were carried out to obtain the drag coefficients for different panels of the transmission towers as well as for the transmission lines. Sensitivity analysis is carried out based upon the incremental dynamic analysis (IDA) to evaluate the structural capacity of the transmission tower-line system for different corrosion and loading conditions. Meanwhile, extreme value analysis is also performed to further estimate the short-term extreme response of the transmission tower-line system.

극단화소를 이용한 Hyperion 데이터의 노이즈 밴드제거 (The Removal of Noisy Bands for Hyperion Data using Extrema)

  • 한동엽;김대성;김용일
    • 대한원격탐사학회지
    • /
    • 제22권4호
    • /
    • pp.275-284
    • /
    • 2006
  • Hyperion 영상의 노이즈는 주로 대기 효과와 센서의 기계오류, 신호변환 때문이다. 보정되지 않은 밴드, 중복 밴드, 모든 대기흡수에 영향을 많이 받는 밴드가 모두 제거되어도, 여전히 노이즈 밴드가 존재한다. 영상처리에 사용할 선명하고 안정된 밴드를 선택하기 위해 육안으로 영상을 간단하게 검사할 수 있지만, 이는 수동으로 이루어지는 비효율적이고 주관적인 방법이다 본 논문에서 우리는 노이즈 추정과 자동 밴드 선택을 위해 극단화소비 사용을 제안한다. 이를 위해 기존에 사용되던 SNR, 엔트로피와 극단화소비를 비교하였다. 첫째, 상대적으로 노이즈가 적은 ALI 영상에 Gaussian 노이즈, salt & pepper 노이즈, Speckle 노이즈를 부가하여 노이즈량과 각 통계량 사이의 관계를 살펴보았다. 둘째, Hyperion 영상에서 추출된 세 개 통계량에 대해 기대최대화 분석을 수행하여 자동으로 밴드를 선택하였다. Hyperion 데이터는 시각적 평가에 의해 5단계로 구분되어 평가자료로 사용되었다. 실험 결과에서 극단화소비가 Hyperion 영상의 밴드 선택에 효과적으로 사용될 수 있었다.

시험발사체 궤적 및 낙하점 분산 분석 (Analysis on Trajectory and Impact Point Dispersion of Test Launch Vehicle)

  • 송은정;조상범;최지영;이상일;김영훈;선병찬
    • 한국항공우주학회지
    • /
    • 제49권8호
    • /
    • pp.681-688
    • /
    • 2021
  • 본 논문은 시험발사체의 비행궤적 및 낙하점 분산 분석에 대해 다룬다. 2018년 11월의 시험발사체 비행시험 전/후에 수행한 비행궤적 및 낙하점 분산 분석 과정을 설명하고 비행시험 결과와의 비교를 통해 분산 분석 방안이 적절하였음을 보인다. 발사체의 궤적 및 낙하점 분산은 발사체 성능 오차 요인 및 대기권에서의 바람 영향을 고려한 6자유도 몬테카를로 시뮬레이션을 통해 이루어진다. 이와 같이 사전에 분석한 결과를 토대로 비행시험 전에 낙하 안전 영역을 설정한다. 결과적으로, 시험발사체는 사전에 분석한 궤적 및 낙하점 분산 범위 내에서 안전하게 비행하였다.

미세먼지(PM10)와 초미세먼지(PM2.1)의 농도와 폐포 침착율 조사 (Investigation of the Concentration of PM2.1 & PM10 and Alveolar Deposition Ratio)

  • 김성천
    • 한국환경보건학회지
    • /
    • 제45권2호
    • /
    • pp.126-133
    • /
    • 2019
  • Objectives: In this study, a nine-stage cascade impactor was used to collect dust, and the concentration of $PM_{2.1}$ & $PM_{10}$ and alveolar deposition ratio were investigated. Methods: This study was conducted at Kunsan National University from May to June 2016. A nine-stage Cascade Impactor was used to analyze the concentrations of fine and ultrafine dust and to estimate the alveolar deposition rate by particle size of atmospheric dust particles. The pore size of each stage of the collector used in this study gradually increased from F to 0, with the F-stage as the last stage. Results: The mass fraction of PM showed a bimodal distribution divided into $PM_{2.1}$ & $PM_{10}$ based on $2.1-3.1{\mu}m$. The average mass fraction of particulate matter in the range of $2.1-3.1{\mu}m$ was 44%, and the area occupied by $PM_{2.1}$ was similar. Therefore, the Gunsan area is considered to be a region where there are similar effects from anthropogenic and natural sources. Conclusion: Dust collecting efficiency increased with the stage of collecting fine dust, and the efficiency of collection was very low at the stage of collecting ultra-fine dust. The seasonal overall efficiency of the Cascade Impactor was 44% in spring and 37.4% in summer, and the average overall efficiency was 40.7%. The alveolar deposition rate of $PM_{2.1}/PM_{10}$ during the sampling period was estimated to be about 75% deposited in the alveoli.

DEVELOPMENT OF THE SNU COELOSTAT: CONCEPTUAL DESIGN

  • Kang, Juhyung;Chae, Jongchul;Kwak, Hannah;Yang, Heesu
    • 천문학회지
    • /
    • 제51권6호
    • /
    • pp.207-214
    • /
    • 2018
  • A coelostat is often used for solar observations, because it corrects the image rotation automatically by guiding sunlight into a fixed telescope with two plane mirrors. For the purposes of education and spectroscopic observation, the solar group at Seoul National University (SNU) plans to develop the SNU coelostat (SNUC) and install it in the SNU Astronomical Observatory (SAO). Requirements of the SNUC are < 1" positioning accuracy with 30 cm beam size on the entrance pupil in the compact dome. To allow for installation in the small dome, we design a compact slope type coelostat with a 45 cm primary plane mirror and a 39 cm secondary plane mirror. The motion of the SNUC is minimized by fixing the position of the slope frame. Numerical simulations of the available observational time of the designed coelostat shows that the sun can be observed ay all times from June to early August and at least three hours in other months. Since the high accuracy driving motors installed in the SNUC can be affected by external environment factors such as humidity and temperature variations, we design a prototype to test the significance of these effects. The prototype consists of a 20 cm primary plane mirror, a 1 m slope rail, a direct drive motor, a ballscrew, a linear motion guide, an AC servo motor, a reduction gear and a linear encoder. We plan to control and test the accuracy of the prototype with varying atmospheric conditions in early 2019. After testing the prototype, the SNUC will be manufactured and installed in SAO by 2020.

픽셀 기반 Joint BDCP와 계층적 양방향 필터를 적용한 단일 영상 기반 안개 제거 기법 (Single Image Haze Removal Technique via Pixel-based Joint BDCP and Hierarchical Bilateral Filter)

  • 오원근;김종호
    • 한국전자통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.257-264
    • /
    • 2019
  • 본 논문에서는 픽셀 기반 joint BDCP (bright and dark channel prior)와 계층적 양방향 필터를 적용하여 저 복잡도를 갖는 단일 영상 기반 안개 제거 기법을 제안한다. 픽셀 기반 joint BDCP는 기존의 패치 기반 DCP에 비해 연산량을 감소시키고, 픽셀 단위의 안개값 예측을 가능하게 하여 전달량 추정의 정확성을 높인다. 또한 에지를 보존하면서 평탄화 성능이 우수한 양방향 필터를 사용하여 전달량을 정련함으로써 후광 효과(halo effect)를 줄이고, 에지 성분에 대한 계층적 적용을 통해 반복 적용에 의한 연산량의 증가를 방지한다. 안개 성분이 포함된 다양한 영상에 대해 수행한 실험 결과는 제안하는 기법이 기존의 기법에 비해 우수한 안개 제거 성능을 보이면서 저 복잡도로 실행되어 다양한 분야에 응용될 수 있음을 나타낸다.

Multi-temporal Analysis of High-resolution Satellite Images for Detecting and Monitoring Canopy Decline by Pine Pitch Canker

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • 대한원격탐사학회지
    • /
    • 제35권4호
    • /
    • pp.545-560
    • /
    • 2019
  • Unlike other critical forest diseases, pine pitch canker in Korea has shown rather mild symptoms of partial loss of crown foliage and leaf discoloration. This study used high-resolution satellite images to detect and monitor canopy decline by pine pitch canker. To enhance the subtle change of canopy reflectance in pitch canker damaged tree crowns, multi-temporal analysis was applied to two KOMPSAT multispectral images obtained in 2011 and 2015. To assure the spectral consistency between the two images, radiometric corrections of atmospheric and shadow effects were applied prior to multi-temporal analysis. The normalized difference vegetation index (NDVI) of each image and the NDVI difference (${\Delta}NDVI=NDVI_{2015}-NDVI_{2011}$) between two images were derived. All negative ΔNDVI values were initially considered any pine stands, including both pitch canker damaged trees and other trees, that showed the decrease of crown foliage from 2011 to 2015. Next, $NDVI_{2015}$ was used to exclude the canopy decline unrelated to the pitch canker damage. Field survey data were used to find the spectral characteristics of the damaged canopy and to evaluate the detection accuracy from further analysis.Although the detection accuracy as assessed by limited number of field survey on 21 sites was 71%, there were also many false alarms that were spectrally very similar to the damaged canopy. The false alarms were mostly found at the mixed stands of pine and young deciduous trees, which might invade these sites after the pine canopy had already opened by any crown damages. Using both ${\Delta}NDVI$ and $NDVI_{2015}$ could be an effective way to narrow down the potential area of the pitch canker damage in Korea.

포플러 목재칩을 이용한 농산촌 마을 집단난방시 연료품질, 비용, 대기환경에 미치는 영향에 관한 연구 (A Study on the Effect of Group Heating in Rural Villages Using Poplar Wood Chips on Fuel Quality, Cost, and Atmospheric Environment)

  • 안병일;고경호
    • 한국농공학회논문집
    • /
    • 제64권2호
    • /
    • pp.57-69
    • /
    • 2022
  • This study analyzes the fuel conditions and environmental effects of converting heating in rural villages that rely on fossil fuels into wood fuel. In particular, we tried to derive the most important considerations when using wooden chips as fuel in aging agricultural villages where various variables such as weather, facility characteristics, fuel quality, and maintenance capabilities work. Above all, an experiment was conducted by comparing it with oak trees to determine whether Italian poplar, a representative attribute water created to supply fuel wood in Korea, is suitable for heating fuel. Through experiments, 1) Even though the supply of poplar wood chips during 10 hours of operation was 60.74 kg less than that of hardwood chips, the production of hot water was 140 kWh higher. 2) The higher the exhaust gas temperature, the proportional (increase) oxygen concentration and inversely (decrease) PM and CO emissions. 3) Poplar has twice as much ash content as hardwood and three times more fine dust has been detected, but it meets all the standards for wood quality at the Korea Forest Science Institute. 4) Under the condition that there is a difference in water content (7.7%), hardwood cost 1.13 times more wood chips per 1 MWh than poplar, and even if the water content is corrected equally, hardwood cost 1.05 times more per 1 MWh than poplar. 5) In conclusion, it was proved that the fuel possibility, economic possibility, and environmental possibility of poplar wood chips are sufficient.