• Title/Summary/Keyword: Atmospheric composition

Search Result 414, Processing Time 0.023 seconds

Development of High Spectral Resolution Lidar System for Measuring Aerosol and Cloud

  • Zhao, Ming;Xie, Chen-Bo;Zhong, Zhi-Qing;Wang, Bang-Xin;Wang, Zhen-Zhu;Dai, Pang-Da;Shang, Zhen;Tan, Min;Liu, Dong;Wang, Ying-Jian
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.695-699
    • /
    • 2015
  • A high spectral resolution lidar (HSRL) system based on injection-seeded Nd:YAG laser and iodine absorption filter has been developed for the quantitative measurement of aerosol and cloud. The laser frequency is stabilized at 80 MHz by a frequency locking system and the absorption line of iodine cell is selected at the 1111 line with 2 GHz width. The observations show that the HSRL can provide vertical profiles of particle extinction coefficient, backscattering coefficient and lidar ratio for cloud and aerosol up to 12 km altitude, simultaneously. For the measured cases, the lidar ratios are 10~20 sr for cloud, 28~37 sr for dust, and 58~70 sr for urban pollution aerosol. It reveals the potential of HSRL to distinguish the type of aerosol and cloud. Time series measurements are given and demonstrate that the HSRL has ability to continuously observe the aerosol and cloud for day and night.

12-year LIDAR Observations of Tropospheric Aerosol over Hefei (31.9°N, 117.2°E), China

  • Wu, Decheng;Zhou, Jun;Liu, Dong;Wang, Zhenzhu;Zhong, Zhiqing;Xie, Chenbo;Qi, Fudi;Fan, Aiyuan;Wang, Yingjian
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.90-95
    • /
    • 2011
  • 12-year LIDAR observations of tropospheric aerosol vertical distribution using a Mie scattering LIDAR in Hefei ($31.9^{\circ}N$, $117.2^{\circ}E$) from 1998 to 2009 are presented and analyzed in this paper. Characters of temporal variation and vertical distribution of tropospheric aerosol over Hefei are summarized from the LIDAR measurements. The impacts of natural source and human activities on the aerosol vertical distribution over Hefei could be seen clearly. Dust particles from the north in spring could affect the aerosol distributions below about 12 km over Hefei, and aerosol scale height in April reaches $2.29{\pm}0.68\;km$. Both LIDAR measurements and surface visibility imply that aerosols in the lower troposphere have been increasing since about 2005.

Assessing the Impact of Locally Produced Aerosol on the Rainwater Composition at the Gosan Background Site in East Asia

  • Han, Yeongcheol;Huh, Youngsook
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.69-80
    • /
    • 2014
  • It is often assumed that atmospheric observations at remote sites represent long-range transport of airborne material, and local influences are overlooked. We evaluated the impact of local input on the rainwater composition at Gosan Station, a strategic site for monitoring the continental outflow from Asia. We analyzed a 14-year record of rainwater chemical composition archived by the Korea Meteorological Administration and detected local terrestrial contribution for nitrate, sulfate and ammonium. We also measured the chemical composition of rainwater sampled simultaneously at multiple locations within the premises of the Gosan Station, from which local influence with meter-scale spatial heterogeneity could be discerned. We estimate that the local input accounted for at least ~10% of the wet deposition of nitrogen and ~12% of the wet deposition of sulfur during the 14 years. This highlights the significance of the local influence, which should be carefully assessed when interpreting atmospheric observations at this site.

An Iterative Algorithm to Estimate LIDAR Ratio for Thin Cirrus Cloud over Aerosol Layer

  • Wang, Zhenzhu;Liu, Dong;Xie, Chenbo;Zhou, Jun
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.209-215
    • /
    • 2011
  • A new iterative algorithm is developed to estimate LIDAR ratio for a thin cirrus cloud over an aerosol layer. First, the thin cirrus cloud is screened out and replaced by a modeled LIDAR signal and the extinction coefficients of the aerosol layer are derived using the Fernald backward method. These aerosol coefficients are referred as the "actual values". Second, the original LIDAR signal which includes the thin cirrus cloud is also inverted by the Fernald backward method down to the aerosol layer but using different LIDAR ratio for the thin cirrus cloud. Depending on the different assumptions about the LIDAR ratio of the thin cirrus cloud, different sets of aerosol extinction can be derived. The "actual values" which are found in the first step can be used to constrain this iterative progress and the correct LIDAR ratio of the thin cirrus cloud can be found. The detailed description of this method and retrieval examples are given in the paper. The cases compared with other methods are presented and the statistical result is also shown and agrees well with other studies.

An Algorithm to Determine Aerosol Extinction Below Cirrus Cloud from Mie-LIDAR Signals

  • Wang, Zhenzhu;Wu, Decheng;Liu, Dong;Zhou, Jun
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.444-450
    • /
    • 2010
  • The traditional approach to inverting aerosol extinction makes use of the assumption of a constant LIDAR ratio in the entire Mie-LIDAR signal profile using the Fernald method. For the large uncertainty in the cloud optical depth caused by the assumed constant LIDAR ratio, an not negligible error of the retrieved aerosol extinction below the cloud will be caused in the backward integration of the Fernald method. A new algorithm to determine aerosol extinction below a cirrus cloud from Mie-LIDAR signals, based on a new cloud boundary detection method and a Mie-LIDAR signal modification method, combined with the backward integration of the Fernald method is developed. The result shows that the cloud boundary detection method is reliable, and the aerosol extinction below the cirrus cloud found by inverting from the modified signal is more efficacious than the one from the measured signal including the cloud-layer. The error due to modification is less than 10% taken in our present example.

A Combined Atmospheric Radiative Transfer Model (CART): A Review and Applications

  • Chen, Xiuhong;Wei, Heli
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.190-198
    • /
    • 2010
  • A set of radiative transfer software named CART (Combined Atmospheric Radiative Transfer) has been developed to rapidly calculate atmospheric transmittance and background radiance. The spectral resolution of CART is $1cm^{-1}$, and the spectral region covers from 1 to $25000cm^{-1}$. CART has five characteristic features, and it can be applied to many fields. The features and applications of CART are summarized in detail.

A Study on Chemical Composition of Dustfall Samples in Cheju Area - 1. Chemical composition and deposition (제주지역 강하 먼지의 조성에 관하여 - 1. 화학적 조성 및 침적량)

  • 이기호;허철구;송문호;박용이
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.1
    • /
    • pp.13-22
    • /
    • 1999
  • This study is carried out to investigate the chemical composition of atmospheric deposition in Cheju Island, Korea. For this purpose, dustfall matter samples are collected by dust jar from August, 1995 to July, 1996 at five sampling sites and total suspended particulate matters (TSP) and rain are also collected at one site from October, 1995 to July, 1996. All the samples collected are analyzed, and then the information of the 19 chemical species and deposition amount of each species is obtained. These data are used to determine the regional trends in dustfall chemistry and deposition, and compare the characteristics of chemical compositions between dustfall, TSP and rainwater.

  • PDF

A comparative study of the ionic composition of aerosols from the North Sea and a North Sea coastal area

  • Lee, Jong-Min;Schrems, Otto
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.47-48
    • /
    • 2001
  • It is well known that atmospheric aerosols play an important role in the radiation balance of the earth and meteorological processes as well as in atmospheric chemistry. Aerosols may origin from both natural and/or anthropogenic sources. Thus, the chemical composition of aerosols can vary considerably. For example, the chemical composition of marine aerosol has been the subject of a considerable number of investigations, including the evaluation of long-range transport of anthropogenic constituents on the chemistry of the remote marine boundary layer. (omitted)

  • PDF

Characteristics of long-range transported PM2.5 at a coastal city using the single particle aerosol mass spectrometry

  • Cai, Qiuliang;Tong, Lei;Zhang, Jingjing;Zheng, Jie;He, Mengmeng;Lin, Jiamei;Chen, Xiaoqiu;Xiao, Hang
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.690-698
    • /
    • 2019
  • Air pollution has attracted ever-increasing attention because of its substantial influence on air quality and human health. To better understand the characteristics of long-range transported pollution, the single particle chemical composition and size were investigated by the single particle aerosol mass spectrometry in Fuzhou, China from 17th to 22nd January, 2016. The results showed that the haze was mainly caused by the transport of cold air mass under higher wind speed (10 m·s-1) from the Yangtze River Delta region to Fuzhou. The number concentration elevated from 1,000 to 4,500 #·h-1, and the composition of mobile source and secondary aerosol increased from 24.3% to 30.9% and from 16.0% to 22.5%, respectively. Then, the haze was eliminated by the clean air mass from the sea as indicated by a sharp decrease of particle number concentration from 4,500 to 1,000 #·h-1. The composition of secondary aerosol and mobile sources decreased from 29.3% to 23.5% and from 30.9% to 23.1%, respectively. The particles with the size ranging from 0.5 to 1.5 ㎛ were mainly in the accumulation mode. The stationary source, mobile source, and secondary aerosol contributed to over 70% of the potential sources. These results will help to understand the physical and chemical characteristics of long- range transported pollutants.