• Title/Summary/Keyword: Atmospheric Effect

Search Result 1,587, Processing Time 0.032 seconds

Analysis of the Relationship of Cold Air Damming with Snowfall in the Yeongdong Region (영동 지역 한기 축적과 강설의 연관성 분석)

  • Kim, Mi-Gyeong;Kim, Byung-Gon;Eun, Seung-Hee;Chae, Yu-Jin;Jeong, Ji-Hoon;Choi, Young-Gil;Park, Gyun-Myeong
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.421-431
    • /
    • 2021
  • The Yeongdong region is frequently vulnerable to heavy snowfall in winter in terms of societal and economical damages. By virtue of a lot of previous efforts, snowfall forecast has been significantly improved, but the performance of light snowfall forecast is still poor since it is very conducive to synoptic and mesoscale interactions, largely attributable to Taeback mountains and East Sea effects. An intensive observation has been made in cooperation with Gangwon Regional Meteorological Office and National Institute of Meteorological Studies in winter seasons since 2019. Two distinctive Cold Air Damming (CAD) events (14 February 2019 and 6 February 2020) were observed for two years when the snowfall forecast was wrong specifically in its location and timing. For two CAD events, lower-level temperature below 2 km ranged to lowest limit in comparisons to those of the previous 6-years (2014~2019) rawinsonde soundings, along with the stronger inversion strength (> 2.0℃) and thicker inversion depth (> 700 m). Further, the northwesterly was predominant within the CAD layer, whereas the weak easterly wind was exhibited above the CAD layer. For the CAD events, strong cold air accumulation along the east side of Taeback Mountains appeared to prevent snow cloud and convergence zone from penetrating into the Yeongdong region. We need to investigate the influence of CAD on snowfall in the Yeongdong region using continuous intensive observation and modeling studies altogether. In addition, the effect of synoptic and mesoscale interactions on snowfall, such as nighttime drainage wind and land breeze, should be also examined.

Monitoring and Long-term Trend of Total Column Ozone from Dobson Spectrophotometer in Seoul (1985~2017) (돕슨 분광광도계를 이용한 서울 상공의 오존층 감시 및 장기변화 경향(1985~2017))

  • Park, Sang Seo;Cho, Hi Ku;Koo, Ja-Ho;Lim, Hyunkwang;Lee, Hana;Kim, Jhoon;Lee, Yun Gon
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.13-20
    • /
    • 2019
  • Since 1985, the Dobson Spectrophotometer has been operated at Yonsei University, and this instrument has monitored the daily representative total ozone in Seoul. Climatological value for total ozone in Seoul is updated by using the daily representative observation data from 1985 to 2017. After updating the daily representative total ozone data, seasonal and inter-annual variation of total ozone in Seoul is also estimated after calculating inter-comparison between ground (Dobson Spectrophotometer) and satellite [Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI)] observations. The global average of total ozone measured by satellite is 297 DU, and its recent amount is about 3.5% lower than the global amount in 1980s. In Seoul, daily representative total ozone is ranged from 225 DU to 518 DU with longterm mean value of 324.3 DU. In addition, monthly mean total ozone is estimated from 290 DU (October) to 362 DU (March), and yearly average of total ozone have been continuously increased since 1985. For the long-term trend of total ozone in Seoul, this study is considered the seasonal variation, Solar Cycle, and Quasi-Biennial Oscillation. In addition to the natural oscillation effect, this study also considered to the long-term variation of sudden increase of total ozone due to the secondary ozone peak. By considering these natural effects, the long-term total ozone trends from 1985 to 2017 are estimated to be 1.11~1.46%/decade.

Analyzing the Changes in O3 Concentration due to Reduction in Emissions in a Metropolitan Area : A Case Study of Busan during the Summer of 2019 (대도시 지역의 배출량 저감에 따른 O3 농도 변화 분석: 부산광역시 2019년 여름 사례 )

  • Hyeonsik Choe;Wonbae Jeon;Dongjin Kim;Chae-Yeong Yang;Jeonghyeok Mun;Jaehyeong Park
    • Journal of Environmental Science International
    • /
    • v.32 no.7
    • /
    • pp.503-520
    • /
    • 2023
  • In this study, numerical simulations using community multiscale air quality (CMAQ) were conducted to analyze the change in ozone (O3) concentration due to the reduction in nitrogen oxides (NOx)andvolatile organic compounds (VOCs) emissions in Busan. When the NOx and, VOCs emissions were reduced by 40% and, 31%, respectively, the average O3 concentration increased by 4.24 ppb, with the highest O3 change observed in the central region (4.59 ppb). This was attributed to the decrease in O3 titration by nitric oxide (NO) due to the reduction of NOx emissions in Busan, which is classified as a VOCs-limited area. The distribution of O3 concentration changes was closely related to NOx emissions per area, and inland emissions were highly correlated with daily maximum concentrations and 8-h average O3 concentrations. Contrastingly, the effect of emission reduction depended on the wind direction. This suggests that the emission reduction effects may vary depending on the environmental conditions. Further research is needed to comprehensively analyze the emission reduction effects in Busan.

The Evaluation of Surface and Adhesive Bonding Properties for Cold Rolled Steel Sheet for Automotive Treated by Ar/O2 Atmospheric Pressure Plasma (대기압 Ar/O2 플라즈마 표면처리된 자동차용 냉연강판의 표면특성 및 접착특성평가)

  • Lee, Chan-Joo;Lee, Sang-Kon;Park, Geun-Hwan;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.354-361
    • /
    • 2008
  • Cold rolled steel sheet for automotive was treated by Ar/$O_2$ atmospheric pressure plasma to improve the adhesive bonding strength. Through the contact angle test and calculation of surface free energy for cold rolled steel sheet, the changes of surface properties were investigated before and after plasma treatment. The contact angle was decreased and surface free energy was increased after plasma treatment. And the change of surface roughness and morphology were observed by AFM(Atomic Force Microscope). The surface roughness of steel sheet was slightly changed. Based on Taguchi method, single lap shear test was performed to investigate the effect of experimental parameter such as plasma power, treatment time and flow rate of $O_2$ gas. Results shows that the bonding strength of steel sheet treated in Ar/$O_2$ atmospheric pressure plasma was improved about 20% compared with untreated sheet.

Effect of cylinder aspect ratio on wake structure behind a finite circular cylinder located in an atmospheric boundary layer (대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-Woo;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.247-252
    • /
    • 2001
  • The flow around free end of a finite circular cylinder(FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wake structures behind a 2-D cylinder and a finite cylinder located in a uniform flow were also measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency is decreased and the vortex formation length is increased compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, in the region near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly established. In the wake center region, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit, compared to that of uniform flow.

  • PDF

Effects of Selected Environmental Conditions on Biomass and Geosmin Production by Streptomyces halstedii

  • Schrader, Kevin K.;Blevins, Willard T.
    • Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.159-167
    • /
    • 1999
  • The effects of bicarbonate concentration, atmospheric carbon dioxide level, and reduced atmospheric oxygen on biomass and geosmin production and geosmin/biomass (G/B) values for Streptomyces halstedii, a producer of the off-flavor compound geosmin, were determined. In addition, a study was performed to determined possible synergistic relationships between a cyanobacterium, Oscillatoria tenuis UTEX #1566, and S. halstedii in the enhancement of actinomycete growth and/or geosmin production. These studies took into consideration those conditions that can occur during cyanobacterial bloom die-offs. Increasing bicarbonate concentration caused slight decreases in geosmin production and G/B for S. halstedii. Increasing atmospheric oxygen promoted geosmin production and G/B while lower oxygen levels resulted in a decrease in geosmin production and G/B by S. halstedii. Biomass production by S. halstedii was adversely affected by reduced oxygen levels while changes in bicarbonate concentration and atmospheric carbon dioxdie levels had little effect on biomass production. Sonicated cells of O. tenuis UTEX #1566 promoted biomass production by S. halstedii, and O. tenuis culture (cells and extracellular metabolites) and culture supernatnat (extracellular metabolites) each promoted geosmin and G/B yields for S. halstedii. In certain aquatic systems, environmental conditions resulting from cyanobacterial blooms and subsequent bloom die-offs could favor actinomycete growth and off-flavor compound by certain actinomycetes.

  • PDF

Inter-comparison of NO2 column densities measured by Pandora and OMI over Seoul, Korea

  • Yun, Seoyeon;Lee, Hanlim;Kim, Jhoon;Jeong, Ukkyo;Park, Sang Seo;Herman, Jay
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.663-670
    • /
    • 2013
  • Total Vertical Column Density (VCD) of $NO_2$, a key component in air quality and tropospheric chemistry was measured using a ground-based instrument, Pandora, in Seoul from March 2012 to October 2013. The $NO_2$ measurements using Pandora were compared with those obtained by satellite remote sensing from Ozone Monitoring Instrument (OMI) where the intercomparison characteristics were analyzed as a function of measurement geometry, cloud amount and aerosol loading. The negative biases of the OMI $NO_2$ VCD were larger when cloud amount and Aerosol Optical Depth (AOD) were higher. The correlation coefficient between $NO_2$ VCDs from Pandora and OMI was 0.53 for the entire measurement period, whereas the correlation coefficient between the two was 0.74 when the cloud amount and AOD were low (cloud amount<3, AOD<0.4). The low bias of OMI data was associated with the shielding effect of the cloud and the aerosols.

Numerical Simulations of Dry and Wet Deposition over Simplified Terrains

  • Michioka, T.;Takimoto, H.;Ono, H.;Sato, A.
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.270-282
    • /
    • 2017
  • To evaluate the deposition amount on a ground surface, mesoscale numerical models coupled with atmospheric chemistry are widely used for larger horizontal domains ranging from a few to several hundreds of kilometers; however, these models are rarely applied to high-resolution simulations. In this study, the performance of a dry and wet deposition model is investigated to estimate the amount of deposition via computational fluid dynamics (CFD) models with high grid resolution. Reynolds-averaged Navier-Stokes (RANS) simulations are implemented for a cone and a two-dimensional ridge to estimate the dry deposition rate, and a constant deposition velocity is used to obtain the dry deposition flux. The results show that the dry deposition rate of RANS generally corresponds to that observed in wind-tunnel experiments. For the wet deposition model, the transport equation of a new scalar concentration scavenged by rain droplets is developed and used instead of the scalar concentration scavenged by raindrops falling to the ground surface just below the scavenging point, which is normally used in mesoscale numerical models. A sensitivity analysis of the proposed wet deposition procedure is implemented. The result indicates the applicability of RANS for high-resolution grids considering the effect of terrains on the wet deposition.

The Chemical Nature of Individual Size-resolved Raindrops and Their Residual Particles Collected during High Atmospheric Loading for PM2.5

  • Ma, Chang-Jin;Sera, Koichiro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.176-183
    • /
    • 2017
  • Although it is well known that rain plays an important role in capturing air pollutants, its quantitative evaluation has not been done enough. In this study, the effect of raindrop size on pollutant scavenging was investigated by clarifying the chemical nature of individual size-resolved raindrops and their residual particles. Raindrops as a function of their size were collected using the raindrop collector devised by our oneself in previous study (Ma et al., 2000) during high atmospheric loading for $PM_{2.5}$. Elemental analyses of solid residues and individual residual particles in raindrops were subsequently analyzed by Particle Induced X-ray Emission (PIXE) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX), respectively. The raindrop number concentration ($m^{-2}h^{-1}$) tended to drastically decrease as the drop size goes up. Particle scavenging rate, $R_{sca.}$ (%), based on the actual measurement values were 38.7, 69.5, and 80.8% for the particles with 0.3-0.5, 0.5-1.0, and $1.0-2.0{\mu}m$ diameter, respectively. S, Ca, Si, and Al ranked relatively high concentration in raindrops, especially small ones. Most of the element showed a continuous decrease in concentration with increasing raindrop diameter. The source profile by factor analysis for the components of residual particles indicated that the rainfall plays a valuable role in scavenging natural as well as artificial particles from the dirty atmosphere.

Numerical method study of how buildings affect the flow characteristics of an urban canopy

  • Zhang, Ning;Jiang, Weimei;Hu, Fei
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.159-172
    • /
    • 2004
  • The study of how buildings affect wind flow is an important part of the research being conducted on urban climate and urban air quality. NJU-UCFM, a standard $k-{\varepsilon}$ turbulence closure model, is presented and is used to simulate how the following affect wind flow characteristics: (1) an isolated building, (2) urban canyons, (3) an irregular shaped building cluster, and (4) a real urban neighborhood. The numerical results are compared with previous researchers' results and with wind tunnel experiment results. It is demonstrated that the geometries and the distribution of urban buildings affect airflow greatly, and some examples of this include a changing of the vortices behind buildings and a "channeling effect". Although the mean air flows are well simulated by the standard $k-{\varepsilon}$ models, it is important to pay attention to certain discrepancies when results from the standard $k-{\varepsilon}$ models are used in design or policy decisions: The standard $k-{\varepsilon}$ model may overestimate the turbulence energy near the frontal side of buildings, may underestimate the range of high turbulence energy in urban areas, and may omit some important information (such as the reverse air flows above the building roofs). In ideal inflow conditions, the effects of the heights of buildings may be underestimated, when compared with field observations.