• Title/Summary/Keyword: Atmospheric Effect

Search Result 1,581, Processing Time 0.023 seconds

Enhancement of Vertical Atmospheric Dispersion Due to Roughness (조도에 기인한 연직방향 대기확산의 증대)

  • 박목현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.6
    • /
    • pp.643-650
    • /
    • 1998
  • Many atmospheric dispersion models have been based on the Gaussian distribution concept of plume spread. In application of Gaussian plume dispersion models, vertical dispersion coefficient 3 has been known as a sensitive variable. Vertical diffusivity K2 (=Oz2/2t) tends to increase with surface roughness, and the value of K3 in urban area is larger than that in rural area due to heat emission as well as increased roughness. Though Pasquill proposed a modification scheme for qz vs x system of Pasquill-Gifford under consideration of roughness effect in 1976, there appears not to be realistic reexamination on the modification scheme. In this study literature review on the effect of terrain or roughness on venical plume dispersion has been carried out in order to improve the prediction results of atmospheric pollution concentration. Again a few research objectives on vertical atmospheric dispersion in complex terrain were Proposed.

  • PDF

A Comparative Study of k-ε Algebraic Stress Model and Mellor-Yamada Model Applied to Atmospheric Dispersion Simulation Using Lagrangian Particle Dispersion Model (라그랑지 입자 모델을 이용한 k-ε Algebraic Stress Model과 Mellor-Yamada Model의 비교 연구)

  • 김상백;오성남
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.47-58
    • /
    • 2004
  • The $textsc{k}$-$\varepsilon$ algebraic stress model (KEASM) was applied to atmospheric dispersion simulation using the Lagrangian particle dispersion model and was compared with the most popular turbulence closure model in the field of atmospheric simulation, the Mellor-Yamada (MY) model. KEASM has been rarely applied to atmospheric simulation, but it includes the pressure redistribution effect of buoyancy due to heat and momentum fluxes. On the other hand, such effect is excluded from MY model. In the simulation study, the difference in the two turbulence models was reflected to both the turbulent velocity and the Lagrangian time scale. There was little difference in the vertical diffusion coefficient $\sigma$$_{z}$. However, the horizontal diffusion coefficient or calculated by KEASM was larger than that by MY model, coincided with the Pasquill-Gifford (PG) chart. The applicability of KEASM to atmospheric simulations was demonstrated by the simulations.s.

Atmospheric Environment Prediction to Consider SST and Vegetation Effect in Coastal Urban Region (해수면온도와 식생효과를 고려한 연안도시지역의 대기환경예측)

  • Ji, Hyo-Eun;Lee, Hwa-Woon;Won, Gyeong-Mee
    • Journal of Environmental Science International
    • /
    • v.18 no.4
    • /
    • pp.375-388
    • /
    • 2009
  • Numerical simulation is essential to indicate the flow of the atmosphere in the region with a complicated topography which consists of many mountains in the inland while it is neighboring the seashore. Such complicated topography produces land and sea breeze as the mesoscale phenomenon of meteorology which results from the effect of the sea and inland. In the mesoscale simulation examines, the change of the temperature in relation to the one of the sea surface for the boundary condition and, in the inland, the interaction between the atmosphere and land surface reflecting the characteristic of the land surface. This research developed and simulated PNULSM to reflect both the SST and vegetation effect as a bottom boundary for detailed meteorological numerical simulation in coastal urban area. The result from four experiments performed according to this protocol revealed the change of temperature field and wind field depending on each effect. Therefore, the lower level of establishment of bottom boundary suitable for the characteristic of the region is necessary to figure out the atmospheric flow more precisely, and if the characteristic of the surface is improved to more realistic conditions, it will facilitate the simulation of regional environment.

ATMOSPHERIC REFRACTION EFFECTS ON LAMOST

  • SUN AIQUN;Hu JINGYAO
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.397-398
    • /
    • 1996
  • Large field spectrographs are severely influenced by atmospheric refraction. LAMOST is a large field multi-object spectroscopy telescope with $5^{\circ}$ field of view, f/5 focus ratio and 20m focal length. There will be 4000 fibers simultaneous on it's $\phi$1.75m focal plane. Here we discuss the atmospheric refraction effects on LAMOST in two hands. One is the effect of differential refraction across the field, another is the effect of atmospheric dispersion. According to the calculation, we find that: 1. The largest deviation from center within the field is 4.;32" during a 1.5-hour integration at $80^{\circ}$ declination. 2. The directions of deviation are complex, so the deviations can't be decreased by rotating the field. We also give out the atmospheric dispersions.

  • PDF

Numerical Simulation of Effect on Atmospheric Flow Field Using High Resolution Terrain Height Data in Complex Coastal Regions (복잡한 해안지역에서 상세한 지헝고도 자료이용에 따른 대기 유동장의 영향에 관한 수치모의)

  • Lee Hwa Woon;Won Hye Young;Choi Hyun-Jung;Lee Kang-Yeol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.179-189
    • /
    • 2005
  • Recently air quality modeling studies for industrial complex and large cities located in the coastal regions have been carried out. Especially, the representation of atmospheric flow fields within a model domain is very important, because an adequate air quality simulation requires an accurate portrayal of the realistic three -dimensional wind fields. Therefore this study investigated effect of using high resolution terrain height data in numerical simulation. So the experiments were designed according to the detail terrain height with 3second resolution or not. Case 30s was the experiment using the terrain height data of USGS and Case 3s was the other using the detail terrain height data of Ministry of Environment. The results of experimental were more remarkable. In Case 3s, temperature indicated similar tendency comparing to observational data predicting maximum temperature during the daytime and wind speed made weakly for difference of terrain height.

ATMOSPHERIC CORRECTION OF LANDSAT SEA SURFACE TEMPERATURE BY USING TERRA MODIS

  • Kim, Jun-Soo;Han, Hyang-Sun;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.864-867
    • /
    • 2006
  • Thermal infrared images of Landsat-5 TM and Landsat-7 ETM+ sensors have been unrivalled sources of high resolution thermal remote sensing (60m for ETM+, 120m for TM) for more than two decades. Atmospheric effect that degrades the accuracy of Sea Surface Temperature (SST) measurement significantly, however, can not be corrected as the sensors have only one thermal channel. Recently, MODIS sensor onboard Terra satellite is equipped with dual-thermal channels (31 and 32) of which the difference of at-satellite brightness temperature can provide atmospheric correction with 1km resolution. In this study we corrected the atmospheric effect of Landsat SST by using MODIS data obtained almost simultaneously. As a case study, we produced the Landsat SST near the eastern and western coast of Korea. Then we have obtained Terra/MODIS image of the same area taken approximately 30 minutes later. Atmospheric correction term was calculated by the difference between the MODIS SST (Level 2) and the SST calculated from a single channel (31 of Level 1B). This term with 1km resolution was used for Landsat SST atmospheric correction. Comparison of in situ SST measurements and the corrected Landsat SSTs has shown a significant improvement in $R^2$ from 0.6229 to 0.7779. It is shown that the combination of the high resolution Landsat SST and the Terra/MODIS atmospheric correction can be a routine data production scheme for the thermal remote sensing of ocean.

  • PDF

A large eddy simulation on the effect of buildings on urban flows

  • Zhang, Ning;Jiang, Weimei;Miao, Shiguang
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.23-35
    • /
    • 2006
  • The effect of buildings on flow in urban canopy is one of the most important problems in local/micro-scale meteorology. A large eddy simulation model is used to simulate the flow structure in an urban neighborhood and the bulk effect of the buildings on surrounding flows is analyzed. The results demonstrate that: (a) The inflow conditions affect the detailed flow characteristics much in the building group, including: the distortion or disappearance of the wake vortexes, the change of funneling effect area and the change of location, size of the static-wind area. (b) The bulk effect of the buildings leads to a loss of wind speed in the low layer where height is less than four times of the average building height, and this loss effect changes little when the inflow direction changes. (c) In the bulk effect to environmental fields, the change of inflow direction affects the vertical distribution of turbulence greatly. The peak value of the turbulence energy appears at the height of the average building height. The attribution of fluctuations of different components to turbulence changes greatly at different height levels, in the low levels the horizontal speed fluctuation attribute mostly, while the vertical speed fluctuation does in high levels.

Numerical Study on Atmospheric Flow Variation Associated With the Resolution of Topography (지형자료 해상도에 따른 대기 유동장 변화에 관한 수치 연구)

  • Lee, Soon-Hwan;Kim, Sun-Hee;Ryu, Chan-Su
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1141-1154
    • /
    • 2006
  • Orographic effect is one of the important factors to induce Local circulations and to make atmospheric turbulence, so it is necessary to use the exact topographic data for prediction of local circulations. In order to clarify the sensitivity of the spatial resolution of topography data, numerical simulations using several topography data with different spatial resolution are carried out under stable and unstable synoptic conditions. The results are as follows: 1) Influence of topographic data resolution on local circulation tends to be stronger at simulation with fine grid than that with coarse grid. 2) The hight of mountains in numerical model become mote reasonable with high resolution topographic data, so the orographic effect is also emphasized and clarified when the topographic data resolution is higher. 2) The higher the topographic resolution is, the stronger the mountain effect is. When used topographic data resolution become fine, topography in numerical model becomes closer to real topography. 3) The topographic effect tends to be stronger when atmospheric stability is strong stable. 4) Although spatial resolution of topographic data is not fundamental factor for dramatic improvement of weather prediction accuracy, some influence on small scale circulation can be recognized, especially in fluid dynamic simulation.

THE EFFECT OF ATMOSPHERIC SCATTERING AS INFERRED FROM THE ROCKET-BORNE UV RADIOMETER MEASUREMENTS

  • Kim, Jhoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.87-93
    • /
    • 1997
  • Radiometers in UV and visible wavelengths were onboard the Korean Sounding Rocket(KSR)-1 and 2 which were launched on June 4th and September 1st, 1993. These radiometers were designed to capture the solar radiation during the ascending period of the rocket flight. The purpose of the instrument was to measure the vertical profiles of stratospheric ozone densities. Since the instrument measured the solar radiation from the ground to its apogee, it is possible to investigate the altitude variation of the measured intensity and to estimate the effect of atmospheric scattering by comparing the UV and visible intensity. The visible channel was a reference because the 450-nm wavelength is in the atmospheric window region, where the solar radiation is transmitted through the atmosphere without being absorbed by other atmospheric gases. The use of 450-nm channel intensity as a reference should be limited to the altitude ranges above the certain altitudes, say 20 to 25km where the signals are not perturbed by atmospheric scattering effects.

  • PDF

Sensitivity Analysis of the Atmospheric Dispersion Modeling through the Condition of Input Variable (입력변수의 조건에 따른 대기확산모델의 민감도 분석)

  • Chung Jin-Do;Kim Jang-Woo;Kim Jung-Tae
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.851-860
    • /
    • 2005
  • In order to how well predict ISCST3(lndustrial Source Complex Short Term version 3) model dispersion of air pollutant at point source, sensitivity was analysed necessary parameters change. ISCST3 model is Gaussian plume model. Model calculation was performed with change of the wind speed, atmospheric stability and mixing height while the wind direction and ambient temperature are fixed. Fixed factors are wind direction as the south wind(l80") and temperature as 298 K(25 "C). Model's sensitivity is analyzed as wind speed, atmospheric stability and mixing height change. Data of stack are input by inner diameter of 2m, stack height of 30m, emission temperature of 40 "C, outlet velocity of 10m/s. On the whole, main factor which affects in atmospheric dispersion is wind speed and atmospheric stability at ISCST3 model. However it is effect of atmospheric stability rather than effect of distance downwind. Factor that exert big influence in determining point of maximum concentration is wind speed. Meanwhile, influence of mixing height is a little or almost not.