• 제목/요약/키워드: Atmospheric $SO_2$

검색결과 919건 처리시간 0.026초

산림지역 이산화탄소 및 자연적휘발성유기화합물의 교환량 관측기법 기초연구 (A Preliminary Flux Study for CO2 and Biogenic VOCs in a Forest)

  • 김소영;김수연;최순호;김세웅
    • 한국대기환경학회지
    • /
    • 제28권5호
    • /
    • pp.485-494
    • /
    • 2012
  • The purpose of this study is to monitor the flux of $CO_2$ and BVOCs (biogenic volatile organic compounds) between the atmosphere and forest. The main research activities are conducted at Taehwa Research Forest (TRF), managed by the College of Agriculture and Life Sciences at Seoul National University. The TRF site is located 60 km north-east from the center of Seoul Metropolitan Area. The TRF flux tower is in the middle of a Korean Pine (Pinus Koraiensis) plantation ($400m{\times}400m$), surrounded by a mixed forest. Eddy covariance method was used for $CO_2$ flux above the forest and REA (Relaxed eddy accumulation) method applying eddy covariance was used for BVOCs flux. BVOCs flux that was measured in spring (from May 16 to 18) had distribution of 84 to $2917{\mu}g/m^2{\cdot}h$. Especially, it showed that d-limonene being strong reactivity composed the largest fraction of monoterpene. Ambient $CO_2$ concentration measured in Mt. Taehwa was 399 ppm and observed $CO_2$ fluxes between the atmosphere and forest suggested that during the day, $CO_2$ is absorbed by plants through photosynthesis and released during the night.

서울시 대기중 오존의 오염도와 그 영향인자 분석 (An Analysis of Influencing Factors on Ozone Concentration in the Ambient Air in Seoul)

  • 정용;장재연;권숙표
    • 한국대기환경학회지
    • /
    • 제2권1호
    • /
    • pp.73-79
    • /
    • 1986
  • This study is carried out to determine the concentration of the ozone and the factors affecting the variation of ozone concentration in the ambient air in Seoul. The one-hour average concentration of ozone $(O_3)$, sulfur dioxide $(SO_2)$, nitrogen oxides (NO and $NO_2$), suspended particulate (TSP), carbon monoxide (CO) and non-methane hydrocarbon (NMHC) at 5 sites in Seoul measured from September to October in 1983 and 1984 were analysed statistically along with meteorological data for the same period. The results were as follows; 1. The average concentrations of ozone at 5 sites during the period ranged from 3.3 to 9.1 ppb, they were below 20 ppb of the ambient air quality standard of Korea. 2. The maximum hourly concentration of ozone occurred between 2 and 3 p.m. in a day and concentration at night were very low but higher concentrations were observed at around 4 a.m. 3. The concentration ratio between NO and $NO_2$ in Seoul was relatively lower than that for the cities of foreign countries reported so far. 4. The ozone concentration has negative correlationships with the concentration of other primary pollutants$(SO_2, NO, NO_2, CO and NMHC)$ in simple regression analyses. 5. The ozone concentration was positively correlated to wind speed, temperature and insolation intensity but negatively correlated to relative humidity. 6. Stepwise multiple regression analysis of the ozone concentration to the pollutants and meteorological factors indicate that insolation intensity and $[NO_2]/[NO]$ were the primary influencing factors. 7. The three factors of insolation intensity, $[NO_2]/[NO] and NO_2$ concentration had a significant combined effect on the ozone concentration $(r^2 = 0.47-0.57)$.

  • PDF

수원지역 분진의 입경별 이온성분 분포특성에 관한 연구 (Characteristics of Ionic Components in Size-resolved Particulate Matters in Suwon Area)

  • 오미석;이태정;김동술
    • 한국대기환경학회지
    • /
    • 제25권1호
    • /
    • pp.46-56
    • /
    • 2009
  • The main purpose of this study was to investigate air quality trends of ambient aerosol with obtaining size-fractionated information. The suspended particulate matters were continuously collected on membrane filters and glass fiber filters by an 8-stage cascade impactor for 2 years (Sep. 2005 $\sim$ Sep. 2007) in Kyung Hee University-Global Campus. 8 ionic species ($Na^+$, ${NH_4}^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, ${NO_3}^-$, and ${SO_4}^{2-}$) were analyzed by an IC after performing proper pretreatments of each sample filter. The average concentration levels of each ion were $9.24{\mu}g/m^3$ of ${SO_4}^{2-}$, $7.35{\mu}g/m^3$ of ${NO_3}^-$, $2.81{\mu}g/m^3$ of ${NH_4}^+$, $2.11{\mu}g/m^3$ of $Ca^{2+}$, $1.65{\mu}g/m^3$ of $Cl^-$, $1.87{\mu}g/m^3$ of $Na^+$, $0.80{\mu}g/m^3$ of $Mg^{2+}$, and $0.54{\mu}g/m^3$ of $K^+$, respectively. The distribution pattern of $Na^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, and ${NO_3}^-$ was bi-modal and two peaks appeared in the range of $0.4{\sim}0.7{\mu}m$ and $3.3{\sim}4.7{\mu}m$, respectively. On the other hand, ${SO_4}^{2-}$, ${NH_4}^+$, and $K^+$ showed patterns of uni-modal distribution, mostly abounded in the fine mode group.

제주도 해안과 산간 지역 대기 에어러솔의 이온조성 비교 (Ionic composition comparison of atmospheric aerosols at coastal and mountainous sites of jeju island)

  • 홍상범;정덕상;이순봉;이동은;신승희;강창희
    • 분석과학
    • /
    • 제24권1호
    • /
    • pp.24-37
    • /
    • 2011
  • 해안에 위치한 제주도 고산 지역과 산간의 한라산 1100고지 지역에서 대기에어러솔을 채취, 분석한 결과로부터 해안과 산간 지역 대기에어러솔의 이온조성 및 특성을 비교하였다. 이온성분의 농도는 한라산 1100고지보다 고산지역에서 더 높고, 월별로는 $NH_4^+$, nss-$SO_4^{2-}$(비해염 황산)이 6월에 두 지역에서 동시에 높은 농도를 나타내었다. 토양기원의 nss-$Ca^{2+}$(비해염 칼슘)은 인위적 기원의 $NO_3^-$과 상관성이 비교적 크며 봄철에 높은 농도를 나타내었다. 두 지역에서 각 이온들의 시계열 변화를 비교하고 회귀분석을 통해 성분들 간의 상관성을 조사해 본 결과, TSP(총부유분진)의 이온성분은 고산지역에서 해염입자의 영향을 크게 받는 것으로 나타났다. 그리고 nss-$SO_4^{2-}$, $NH_4^+$, nss-$Ca^{2+}$, $K^+$, $NO_3^-$의 농도는 국지오염원보다는 장거리 이동한 대기오염물질의 영향을 많이 받는 것으로 조사되었다.

主要 汚染物質에 대한 家庭에서의 室內外 濃度比較 (Comparison of Five Pollutant Levels between Inside and Outside Homes)

  • ;스탁토마스
    • 한국대기환경학회지
    • /
    • 제3권2호
    • /
    • pp.27-32
    • /
    • 1987
  • 大氣汚染의 疫學的 硏究의 일부로서 미국내 휴스턴시의 家庭을 對象으로 5가지 主要硏究物質($SO_2$, $NO_2$, CO, $O_3$)에 대한 室內外 濃度를 調査하였다. 室內濃度는 침실, 부엌, 거실에서 調査하였고 室外濃度와 比較하였다. 그 結果 오존을 除外한 각 汚染物質에서 부엌과 거실의 濃度는 室外濃度 보다 높았다. 또한 $NO_2$$O_3$를 除外한 각 汚染物質의 室內外 濃度比는 1.8 ~ 2.7을 나타냈다. 특히 家庭 內에서 汚染物質의 室內濃度는 家庭의 住宅構造, 居住者의 吸煙狀況 등에 影響을 받는 것으로 시사되었다.

  • PDF

서울과 고산의 PM2.5 수분함량 계절 특성 (Seasonal Characteristics of PM2.5 Water Content at Seoul and Gosan, Korea)

  • 이형민;김용표
    • 한국대기환경학회지
    • /
    • 제26권1호
    • /
    • pp.94-102
    • /
    • 2010
  • Water content of $PM_{2.5}$ (particles in the atmosphere with a diameter of less than or equal to a nominal $2.5{\mu}m$) was estimated by using a gas/aerosol equilibrium model, SCAPE2, for the particles collected at Seoul and Gosan, Korea. From measured and analyzed characteristics of the particles, the largest difference between Seoul and Gosan is the proportions of total ammonia (t-$NH_3$=gas phase $NH_3$+particle phase ${NH_4}^+$), total nitric acid (t-$HNO_3$=gas phase $HNO_3$+particle phase ${NO_3}^-$) and sulfuric acid ($H_2SO_4$). Even though both sites have sufficient t-$NH_3$ to neutralize acidic species such as $H_2SO_4$, t-$HNO_3$, and t-HCl (total chloric acid=gas phase HCl+particle phase $Cl^-$), equivalent fraction of t-$NH_3$ and t-$HNO_3$ are higher at Seoul and $H_2SO_4$ is higher at Gosan. Based on the modeling result, it is identified that the $PM_{2.5}$ at Seoul is more hygroscopic than Gosan if the meteorological conditions are the same. To reduce water content of $PM_{2.5}$, and thus, mass concentration, control measures for ammonia and nitrate reduction are needed for Seoul, and inter-governmental cooperation is required for Gosan.

Measurement of Hydroxyl Radical Density at Bio-Solutions Generated from the Atmospheric Pressure Non-Thermal Plasma Jet

  • Kim, Yong Hee;Hong, Young June;Uhm, Han Sub;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.494-494
    • /
    • 2013
  • Atmospheric pressure non-thermal plasma of the needle-typed interaction with aqueous solutions has received increasing attention for their biomedical applications [1]. In this context, surface discharges at bio-solutions were investigated experimentally. We have generated the non-thermal plasma jet bombarding the bio-solution surface by using an Ar gas flow and investigated the emission lines by OES (optical emission spectroscopy) [2]. Moreover, The non-thermal plasma interaction with bio-solutions has received increasing attention for their biomedical applications. So we researched, the OH radical density of various biological solutions in the surface by non-thermal plasma were investigated by Ar gases. The OH radical density of DI water; deionized water, DMEM Dulbecco's modified eagle medium, and PBS; 1x phosphate buffered saline by non-thermal plasma jet. It is noted that the OH radical density of DI water and DMEM are measured to be about $4.33{\times}1016cm-3$ and $2.18{\times}1016cm-3$, respectively, under Ar gas flow 250 sccm (standard cubic centimeter per minute) in this experiment. The OH radical density of buffer solution such as PBS has also been investigated and measured to be value of about $2.18{\times}1016cm-3$ by the ultraviolet optical absorption spectroscopy.

  • PDF

항공기로 측정한 서해안 및 수도권 상공의 가스상 물질(O$_3$, NOx, $H_2O$$_2$, SO$_2$) 분포 (Distributions of Gas-phase(O$_3$, NOx, $H_2O$$_2$, SO$_2$) Pollutants in Upper Layer of West Sea Coast and Seoul by Aircraft Measurement)

  • 김영미;한진석;공부주;홍유덕;이상욱;이미혜
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2003년도 추계학술대회 논문집
    • /
    • pp.289-290
    • /
    • 2003
  • O$_3$, $H_2O$$_2$, NOx, SO$_2$ 가 1996년부터 시작된 장거리이동 대기오염물질 조사 연구 사업 중 하나로써 항공기로 관측되었다. 2002년도부터는 대기 내 산화제로써 중요한 역할을 하는 과산화수소가 같이 측정되었다. 항공관측은 조사 연구 사업의 집중 관측 기간 동안인 2002년 3월, 4월, 2003년 4월, 2002년 12월에 이루어졌으며, 서해안(124$^{\circ}$ 10‘E)으로부터 한반도 내륙(127$^{\circ}$00'E)으로 다가가면서 대기오염물질 농도분포를 파악하기 위한 경로를 정하여 측정되었다. 또한 2003년 5월 28일, 6월에는 수도권 상공만을 집중적으로 관측하였다. (중략)

  • PDF

울산지역 대기오염 공간분포 (Spatial Distribution of Air Pollution in the Ulsan Metropolitan Region)

  • 오인보;방진희;김순태;김은혜;황미경;김양호
    • 한국대기환경학회지
    • /
    • 제32권4호
    • /
    • pp.394-407
    • /
    • 2016
  • The spatial air pollution distribution of the Ulsan metropolitan region (UMR) was analyzed using monitoring data and high-resolution numerical simulations. A three-year (2011~2014) analysis for the average concentrations from the 13 air quality monitoring sites in the UMR showed that $SO_2$ and $PM_{10}$ levels in industrial regions were much higher than those in other regions, whereas spatial differences of $NO_2$ and CO concentrations were not significant. In particular, elevated $O_3$ concentrations were clearly found at urban sites near petrochemical complex area. Results from high-resolution simulations by CMAQ model performed for four months of 2012 showed large spatial variations in grid-average pollutant concentrations between industrial areas and other areas in the UMR, which displayed significant changes with wind pattern by season. It was noted that the increases of $SO_2$ and $PM_{10}$ levels were limited in costal industrial areas or over the area nearby the sea in all seasons. Modeled $O_3$ concentrations were quite low in industrial areas and main urban roads with large $NO_x$ emissions. However, the model presented that all pollutant concentrations were significantly increased in the urban residential areas near the industrial complexes in summer season with increase of southerly wind.

분산계수의 전처리에 의한 대기분산모델 성능의 개선 (Improvement of Atmospheric Dispersion Model Performance by Pretreatment of Dispersion Coefficients)

  • 박옥현;김경수
    • 한국대기환경학회지
    • /
    • 제23권4호
    • /
    • pp.449-456
    • /
    • 2007
  • Dispersion coefficient preprocessing schemes have been examined to improve plume dispersion model performance in complex coastal areas. The performances of various schemes for constructing the sigma correction order were evaluated through estimations of statistical measures, such as bias, gross error, R, FB, NMSE, within FAC2, MG, VG, IOA, UAPC and MRE. This was undertaken for the results of dispersion modeling, which applied each scheme. Environmental factors such as sampling time, surface roughness, plume rising, plume height and terrain rolling were considered in this study. Gaussian plume dispersion model was used to calculate 1 hr $SO_2$ concentration 4 km downwind from a power plant in Boryeung coastal area. Here, measured data for January to December of 2002 were obtained so that modelling results could be compared. To compare the performances between various schemes, integrated scores of statistical measures were obtained by giving weights for each measure and then summing each score. This was done because each statistical measure has its own function and criteria; as a result, no measure can be taken as a sole index indicative of the performance level for each modeling scheme. The best preprocessing scheme was discerned using the step-wise method. The most significant factor influencing the magnitude of real dispersion coefficients appeared to be sampling time. A second significant factor appeared to be surface roughness, with the rolling terrain being the least significant for elevated sources in a gently rolling terrain. The best sequence of correcting the sigma from P-G scheme was found to be the combination of (1) sampling time, (2) surface roughness, (3) plume rising, (4) plume height, and (5) terrain rolling.