• Title/Summary/Keyword: Atmosphere Pressure

Search Result 749, Processing Time 0.03 seconds

On the Thermal Low-pressure Onset using Analytical Model around Daegu in Summer (해석학적모델을 이용한 하계 대구지방의 열적저기압 형성에 관한 연구)

  • 김해동;정우식
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1133-1140
    • /
    • 2002
  • The growth and extent of the local pressure field at any point is of primary importance as it supplies the driving force for the local wind circulation which causes a medium-range transport of air pollutants. The local pressure field is produced by the variation of temperature in the lower layers of the atmosphere, and is called the thermal wave. The thermal wave is influenced by the difference in the diurnal variations between two regions with different surface condition, for example land and sea. This difference produces the land- and sea-breeze phenomenon, and brings corresponding variations in the form of the thermal wave. Daytime temperature over the inland area (Daegu) was higher than that of the coastal area (Busan). The temperature difference reached about 5~6$^{\circ}C$ in the late afternoon(30-31 May 1999). The low pressure system of Daegu was most fully developed at the time. In this study, we investigated the possibility of thermal low onset around Daegu in summer with an analytical model. The topography effect was neglected in the model. We could predict a thermal low-pressure of about 3.4hPa at Daegu with wide flat land surface, when the inland area is about 6K warmer than the coastal area temperature. The pressure decrease is somewhat less than the observed value(4~5 hPa).

Effect of High Pressure on Polarographic Parameters of 1-(2-Pyridylazo)-2-naphthol and 4-(2-Pyridylazo)-resorcinol in Methanol-Water Mixed Solution (메탄올-물 混合溶媒中에서 1-(2-Pyridylazo)-2-naphthol과 4-(2-Pyridylazo)-resorcinol의 폴라로그래프법적 파라미터에 미치는 壓力의 影響)

  • Heung Lark Lee;Zun Ung Bae;Jong Hoon Yun
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.197-204
    • /
    • 1985
  • The dependence of polarographic parameters on pressure and temperature for the reduction of 2.0 ${\times}\;10^{-4}$M 1-(2-pyridylazo)-2-naphthol (PAN) and 5.0 ${\times}\;10^{-4}$M 4-(2-pyridylazo)-resorcinol(PAR) in buffered methanol-water mixed solution at the dropping mercury electrode, has been discussed. In this experiment the temperature is varied from 25$^{\circ}C$ to 35$^{\circ}C$ and the pressure is ranging from 1 atmosphere to 1,800 atmospheres. The reduction half-wave potentials are shifted to the more positive potentials with increase in pressure. The diffusion currents of two depolarizers become considerably larger with increase in pressure from 1 atmosphere to about 1,000 atmospheres but are getting smaller above 1,000 atmospheres. The slopes of log plot become much larger with increase in pressure, which indicates the more irreversible reduction. The reduction currents of two depolarizers are found to be diffusion controlled over all pressure ranges. The linear relationships between diffusion current and the concentration of two depolarizers are good agreement over all pressure ranges (1 atm∼1,800atm.).

  • PDF

Environmental Geochemistry of Atmospheric Mercury: Its Backgriound Concentrations and Exchange Across the Air-Surface Interface (대기수은의 환경지화학: 배경농도측정 및 대기-지표면간의 교환작용)

  • 김기현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.189-198
    • /
    • 1996
  • Mercury (Hg) is ubiquitous throughout the earth's atmosphere. The uniqueness of its atmospheric geochemistry is well-known with the high environmental mobility and relatively long atmospheric residence time (c.a., 1 year) associated with its high chemical stability. Despite a growing recognition of the environmental significance of its global cycling, the prexisting Korean database for atmospheric Hg is extremely rare and confined to a number of concentration measurements conducted under relatively polluted urban atmospheric environments. To help activate the research on this suvject, an in-depth analysis on the current development in the measurements of atmospheric mercury and the associated fluxes has been made using the most using the most updated data ests reported worldwide. As a first step toward this purpose, the most reliable techniques commonly employed in the measurements of its concentration in the background atmosphere are introduced in combination with the flux measurement techniques over soil surface such as: dynamic enclosure (or field flux chamber) method and field micrometeorological method. Then the results derived using these measurement techniques are discussed and interpreted with an emphasis on its mobilization across the terrestrial biosphere and atmosphere interface. A unmber of factors including air/soil temperature, soil chemical composition, soil water content, and barometric pressure are found out to be influential to the rate and amount of such exchange processes. Although absolute magnitude of such exchange processes is insignificant relative to that of the major component like the oceanic environment, this exchange process is thought to be the the predominant natural pathway for both the mobilization and redistribution of atmospheric Hg on a local or regional scale.

  • PDF

Effect of Heat-treatment Atmosphere on Photoluminescence of Eu-doped Li-Al-O System (열처리 분위기가 Eu 이온이 첨가된 Li-Al-O계 형광체 특성에 미치는 영향)

  • Kim, Jeong Seog;Cheon, Chae Il;Chae, Ki-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.25-31
    • /
    • 2014
  • New green phosphor is synthesized by reducing $LiAlO_2:xEu^{3+}$ phosphors in a low pressure $H_2$ atmosphere. The $LiAlO_2:xEu^{3+}$ prepared by a solid state reaction method is reported as red phosphor. The effect of the reduction treatment on the $LiAlO_2:xEu^{3+}$ on the crystalline phase change and photoluminescence (PL) property are characterized. The reduced phosphor had a broad green light spectrum centered at 524 nm. The PL intensity of the reduced phosphor increased to a maximum at the reduction temperature of $1100^{\circ}C$. The PL intensity decreased with a further increase in the reduction temperature. The crystalline phase constituting the reduced phosphor varied with the temperature. A new crystalline phase $Li_2Al_4O_7$ was observed at $1100^{\circ}C$. The origin of the green-light emission is discussed in relation to the crystalline phase change.

In-situ Growth of Epitaxial PbVO3 Thin Films under Reduction Atmosphere

  • Oh, Seol Hee;Jin, Hye-Jin;Shin, Hye-Young;Shin, Ran Hee;Yoon, Seokhyun;Jo, William;Seo, Yu-Seong;Ahn, Jai-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.361.1-361.1
    • /
    • 2014
  • PbVO3 (PVO), a polar magnetic material considered as a candidate of multiferroic, has ferroelectricity along the c-axis and 2-dimensional antiferromagnetism lying in the in-plane through epitaxial growth [1,2]. PVO thin films were grown on LaAlO3 (001) substrates under reduction atmosphere from a stable Pb2V2O7 sintered target using pulsed laser deposition method. Epitaxial growth of the PVO films is possible only under Ar atmospheren with no oxygen partial pressure. X-ray diffraction was used to investigate the phase formation and texture of the films. We confirmed epitaxial growth of the PVO films with crystalline relationship of PbVO3[001]//LaAlO3[001] and PbVO3[100]//LaAlO3[100]. In addition, surface morphology of the films displays drastic changes in accordance with the growth conditions. Elongated PVO grains are related to the Pb2V2O7 pyrochlore structure. The relation between structural deformation and ferroelectricity in the PVO films was examined by local measurement of piezoresponse force microscopy.

  • PDF

Estimation of Tropospheric Water Vapor using GPS Observation (GPS를 이용한 대류권의 수증기량 추정에 관한 연구)

  • 송동섭;윤홍식;조재명
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.2
    • /
    • pp.215-222
    • /
    • 2002
  • As the GPS signals propagate from the GPS satellites to the receivers on the ground, they are delayed by the atmosphere. The tropospheric delay consists of two components. The hydrostatic (or "dry") component that is dependent on the dry air gasses in the atmosphere and accounts for approximately 90% of the delay. And the "wet" component that depends on the moisture content of the atmosphere and accounts for the remaining effect of the delay. The Zenith Hydrostatic Delay (ZHD) can be calculated from the local surface pressure. The Total Zenith Delay (TZD) will be estimated and the wet component extracted later. Integrated water Vapor (IWV) gives the total amount of water vapor that a signal from the zenith direction would encounter. Precipitable Water Vapor (PWV) is the IWV scaled by the density of water. The quality of this PWV has been verified by comparison with radiosonde data(at Osan). We processed data for JULY 2 and JULY 14, 1999 from four stations(Cheju, Kwangju, Suwon, Daegu). We found the coincidence between PWV of the estimations using GPS and PWV of pressing the radiosonde data. The average of the difference between PWV using GPS and PWV using radiosonde was 3.77 mm(Std. = $\pm$0.013 mm) and 2.70 mm(Std. = $\pm$0.0011 mm) at Suwon & Kwangju.

Effect of a Coupled Atmosphere-ocean Data Assimilation on Meteorological Predictions in the West Coastal Region of Korea (대기-해양 결합 자료동화가 서해 연안지역의 기상예측에 미치는 영향 연구)

  • Lee, Sung-Bin;Song, Sang-Keun;Moon, Soo-Hwan
    • Journal of Environmental Science International
    • /
    • v.31 no.7
    • /
    • pp.617-635
    • /
    • 2022
  • The effect of coupled data assimilation (DA) on the meteorological prediction in the west coastal region of Korea was evaluated using a coupled atmosphere-ocean model (e.g., COAWST) in the spring (March 17-26) of 2019. We performed two sets of simulation experiments: (1) with the coupled DA (i.e., COAWST_DA) and (2) without the coupled DA (i.e., COAWST_BASE). Overall, compared with the COAWST_BASE simulation, the COAWST_DA simulation showed good agreement in the spatial and temporal variations of meteorological variables (sea surface temperature, air temperature, wind speed, and relative humidity) with those of the observations. In particular, the effect of the coupled DA on wind speed was greatly improved. This might be primarily due to the prediction improvement of the sea surface temperature resulting from the coupled DA in the study area. In addition, the improvement of meteorological prediction in COAWST_DA simulation was also confirmed by the comparative analysis between SST and other meteorological variables (sea surface wind speed and pressure variation).

Analysis of Conductivity Variation and Conduction Mechanism in Bulk NiO Based on Sintering Conditions

  • Ju-Hyeon Lee;Tae-Soo Yeo;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.418-421
    • /
    • 2023
  • Multilayer Ceramic Capacitors (MLCCs) are essential passive components in the electronics industry, known for their high capacitance due to the multilayer structure comprising inner electrodes and dielectric layers. Nickel electrodes are commonly used in MLCCs as the inner electrodes, and to prevent oxidation during the co-firing of the dielectric layers with nickel electrodes, reducing atmosphere is required. However, reducing atmosphere sintering can also induce a reduction of the dielectric, necessitating precise control of oxygen partial pressure. To explore the possibility of using oxide electrodes that do not require reducing atmosphere sintering, we analyze the electrical properties of nickel oxide (NiO) as a potential candidate. As a preliminary study on its use as an alternative inner electrode, the correlation between microstructure and electrical properties of bulk NiO under different sintering conditions was investigated to gain insights into the conduction mechanisms of the material.

Study on Static Pressure Error Model for Pressure Altitude Correction (기압 고도의 정밀도 향상을 위한 정압 오차 모델에 관한 연구)

  • Jung, Suk-Young;Ahn, Chang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.47-56
    • /
    • 2005
  • In GPS/INS/barometer navigation system for UAV, vertical channel damping loop was introduced to suppress divergence of the vertical axis error of INS, which could be reduced to the level of accuracy of pressure altitude measured by a pitot-static tube. Because static pressure measured by the pitot-static tube depends on the speed and attitude of the vehicle, static pressure error models, based on aerodynamic data from wind tunnel test, CFD analysis, and flight test, were applied to reduce the error of pressure altitude. Through flight tests and sensitivity analyses, the error model using the ratio of differential pressure and static pressure turned out to be superior to the model using only differential pressure, especially in case of high altitude flight. Both models were proposed to compensate the effect of vehicle speed change and used differential and static pressure which could be obtained directly from the output of pressure transducer.

Computational Study of The Pulse Waves Discharged From The Open End of a Duct (관 출구로부터 방출되는 펄스파의 수치해석적 연구)

  • Kim, H.D.;Kim, H.S.;Kweon, Y.H.;Lee, D.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.355-360
    • /
    • 2001
  • This study addresses a computational work of the impulsive wave which is discharged from the open end of a pipe. An initial compression wave inside the pipe is assumed to propagate toward atmosphere. The over pressure and wave-length of the initial compression wave are changed to investigate the characteristic values of the impulsive wave. The second order total variation diminishing (TVD) scheme is employed to solve the axisymmetric, compressible, unsteady Euler equations. The relationship between the initial compression wave form and impulsive wave is characterized in terms of the peak pressure of the impulsive wave and its directivity. The results obtained show that for the initial compression wave of a large wave-length the peak pressure of the impulsive wave does not depend on the over pressure of the initial compression wave, but for the initial compression wave of a very short wave-length, like a shock wave, the peak pressure of the impulsive wave is increased with an increase in the over pressure of the initial compression wave. The directivity of the impulsive wave to the pipe axis becomes significant with a decrease in the wave-length of the initial compression wave.

  • PDF