• 제목/요약/키워드: Ataxia-telangiectasia mutated kinase

검색결과 13건 처리시간 0.029초

Recently Emerging Signaling Landscape of Ataxia-Telangiectasia Mutated (ATM) Kinase

  • Farooqi, Ammad Ahmad;Attar, Rukset;Arslan, Belkis Atasever;Romero, Mirna Azalea;ul Haq, Muhammad Fahim;Qadir, Muhammad Imran
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6485-6488
    • /
    • 2014
  • Research over the years has progressively and sequentially provided near complete resolution of regulators of the DNA repair pathways which are so important for cancer prevention. Ataxia-telangiectasia mutated kinase (ATM), a high-molecular-weight PI3K-family kinase has emerged as a master regulator of DNA damage signaling and extensive cross-talk between ATM and downstream proteins forms an interlaced signaling network. There is rapidly growing scientific evidence emphasizing newly emerging paradigms in ATM biology. In this review, we provide latest information regarding how oxidative stress induced activation of ATM can be utilized as a therapeutic target in different cancer cell lines and in xenografted mice. Moreover, crosstalk between autophagy and ATM is also discussed with focus on how autophagy inhibition induces apoptosis in cancer cells.

U937 세포에서 발암관련 유전자들로 구성된 DNA chip을 이용한 방사선 감수성 유전자들의 선발 (Identification of Radiation-Sensitive Gene in U937 Cell by using cDNA-Chip Composed of Human Cancer Related Gene)

  • 김종수;김인규;강경선;윤병수
    • 한국환경성돌연변이발암원학회지
    • /
    • 제22권1호
    • /
    • pp.54-59
    • /
    • 2002
  • We have used cDNA microarray hybridization to identify gene regulated in response to gamma-irradiation in U-937 cell. The cDNA-chip was composed entirely of 1,000 human cancer related gene including apoptosis and angiogenesis etc. In gamma-irradiated U-937 cell, highly charged protein, ribosomal protein L32, four and a half LIM domains 3, lipocalin 2 (oncogene 24p3) and interleukin 15, ataxia telangiectasia mutated (includes complementation groups A, C and D) genes showed increased level of its transcription, and cell division cycle 25A, dihydrofolate reductase, topoisomerase (DNA) II beta(180kD), kinase suppressor of ras and strarigin genes showed reduced level of its transcription compared to untreated U-937 cell. The significant change of level of transcription was not found in well-known ionizing radiation(IR)-responsive gene, such as transcription factor TP53 and p53 related gene, except ataxia telangiectasia mutated gene.

  • PDF

Ataxia-Telangiectasia Mutated Is Involved in Autolysosome Formation

  • Mihwa Hwang;Dong Wha Jun;Bo Ram Song;Hanna Shim;Chang-Hun Lee;Sunshin Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권5호
    • /
    • pp.559-565
    • /
    • 2023
  • Ataxia-telangiectasia mutated (ATM), a master kinase of the DNA damage response (DDR), phosphorylates a multitude of substrates to activate signaling pathways after DNA double-strand breaks (DSBs). ATM inhibitors have been evaluated as anticancer drugs to potentiate the cytotoxicity of DNA damage-based cancer therapy. ATM is also involved in autophagy, a conserved cellular process that maintains homeostasis by degrading unnecessary proteins and dysfunctional organelles. In this study, we report that ATM inhibitors (KU-55933 and KU-60019) provoked accumulation of autophagosomes and p62 and restrained autolysosome formation. Under autophagy-inducing conditions, the ATM inhibitors caused excessive autophagosome accumulation and cell death. This new function of ATM in autophagy was also observed in numerous cell lines. Repression of ATM expression using an siRNA inhibited autophagic flux at the autolysosome formation step and induced cell death under autophagy-inducing conditions. Taken together, our results suggest that ATM is involved in autolysosome formation and that the use of ATM inhibitors in cancer therapy may be expanded.

Ginsenoside compound K reduces the progression of Huntington's disease via the inhibition of oxidative stress and overactivation of the ATM/AMPK pathway

  • Hua, Kuo-Feng;Chao, A-Ching;Lin, Ting-Yu;Chen, Wan-Tze;Lee, Yu-Chieh;Hsu, Wan-Han;Lee, Sheau-Long;Wang, Hsin-Min;Yang, Ding-I.;Ju, Tz-Chuen
    • Journal of Ginseng Research
    • /
    • 제46권4호
    • /
    • pp.572-584
    • /
    • 2022
  • Background: Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of trinucleotide CAG repeat in the Huntingtin (Htt) gene. The major pathogenic pathways underlying HD involve the impairment of cellular energy homeostasis and DNA damage in the brain. The protein kinase ataxia-telangiectasia mutated (ATM) is an important regulator of the DNA damage response. ATM is involved in the phosphorylation of AMP-activated protein kinase (AMPK), suggesting that AMPK plays a critical role in response to DNA damage. Herein, we demonstrated that expression of polyQ-expanded mutant Htt (mHtt) enhanced the phosphorylation of ATM. Ginsenoside is the main and most effective component of Panax ginseng. However, the protective effect of a ginsenoside (compound K, CK) in HD remains unclear and warrants further investigation. Methods: This study used the R6/2 transgenic mouse model of HD and performed behavioral tests, survival rate, histological analyses, and immunoblot assays. Results: The systematic administration of CK into R6/2 mice suppressed the activation of ATM/AMPK and reduced neuronal toxicity and mHTT aggregation. Most importantly, CK increased neuronal density and lifespan and improved motor dysfunction in R6/2 mice. Conversely, CK enhanced the expression of Bcl2 protected striatal cells from the toxicity induced by the overactivation of mHtt and AMPK. Conclusions: Thus, the oral administration of CK reduced the disease progression and markedly enhanced lifespan in the transgenic mouse model (R6/2) of HD.

Differences of SRE (Serum Responsive Element) Activity and Gene Expression between AT5BIVA and LM217 Cells

  • Park, Eun-Kyung;Kim, You-Jin;Rhee, Yun-Hee;Hyesook Chang;Park, Kun-Koo
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.69-69
    • /
    • 1999
  • The human genetic disorder ataxia-telangiectasia (A-T) is a multisystem disease characterized by extreme radiosensitivity. The recent identification of the gene mutated in A-T, ATM, and the demonstration that it encodes a homologous of phosphatidylinositol 3-kinase (PI3-K), the catalytic subunit of an enzyme involved in transmitting signals from the cell surface to the nucleus, provides support for a role for this gene in signal transduction.(omitted)

  • PDF

Triglyceride induces DNA damage leading to monocyte death by activating caspase-2 and caspase-8

  • Byung Chul Jung;Hyun-Kyung Kim;Sung Hoon Kim;Yoon Suk Kim
    • BMB Reports
    • /
    • 제56권3호
    • /
    • pp.166-171
    • /
    • 2023
  • Monocytes are peripheral leukocytes that function in innate immunity. Excessive triglyceride (TG) accumulation causes monocyte death and thus can compromise innate immunity. However, the mechanisms by which TG mediates monocyte death remain unclear to date. Thus, this study aimed to elucidate the mechanisms by which TG induces monocyte death. Results showed that TG induced monocyte death by activating caspase-3/7 and promoting poly (ADP-ribose) polymerase (PARP) cleavage. In addition, TG induced DNA damage and activated the ataxia telangiectasia mutated (ATM)/checkpoint kinase 2 and ATM-and Rad3-related (ATR)/checkpoint kinase 1 pathways, leading to the cell death. Furthermore, TG-induced DNA damage and monocyte death were mediated by caspase-2 and -8, and caspase-8 acted as an upstream molecule of caspase-2. Taken together, these results suggest that TG-induced monocyte death is mediated via the caspase-8/caspase-2/DNA damage/executioner caspase/PARP pathways.

Inhibition Effects of Persicaria amphibia (L.) Delarbre on Oxidative DNA Damage via ATM/Chk2/p53 pathway

  • So-Yeon Han;Hye-Jeong Park;Jeong-Yong Park;Seo-Hyun Yun;Mi-Ji Noh;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2021년도 춘계학술대회
    • /
    • pp.52-52
    • /
    • 2021
  • Persicaria amphibia as an England native plant, is a rhizomatous perennial, one of the rather amphibious plants. Its aquatic form contains water-soluble sugars, starch, and protein. P. amphibia have up to 18% tannins in stems and rhizomes. Previous studies have confirmed the anti-inflammatory activity of live bacteria roots, but no studies on bioactivity are known. DNA damage responses (DDRs) pathways are considered a crucial factor affecting the alleviation of cellular damage. The ataxia-telangiectasia mutated and Rad3 related (ATM) and checkpoint kinase 2 (Chk2) pathways are the main pathways of DNA damage response. Also, p53 is a key integrator of cellular response to oxidative DNA damage, contributing repair, or leading transcription including apoptosis. In the present study, we conducted an investigation into the inhibitory effects of P. amphibia on oxidative DNA damage for confirming potential to complementary medicine and therapies. In conclusion, P. amphibia can provide protective effects against double-stranded DNA break (DSB) caused by oxidative DNA damage.

  • PDF

Amygdalin Modulates Cell Cycle Regulator Genes in Human Chronic Myeloid Leukemia Cells

  • Park, Hae-Jeong;Baik, Haing-Woon;Lee, Seong-Kyu;Yoon, Seo-Hyun;Zheng, Long-Tai;Yim, Sung-Vin;Hong, Seon-Pyo;Chung, Joo-Ho
    • Molecular & Cellular Toxicology
    • /
    • 제2권3호
    • /
    • pp.159-165
    • /
    • 2006
  • To determine the anticancer effect of D-amygdalin (D-mandelinitrole-${\beta}$-D-gentiobioside) in human chronic myeloid leukemia cells K562, we profiled the gene expression between amygdalin treatment and control groups. Through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of D-amygdalin was $57.79{\pm}1.83%$ at the concentration of 5 mg/mL for 24 h. We performed cDNA microarray analysis and compared the gene expression profiles between D-amygdalin (5 mg/mL, 24 h) treatment and control groups. Among the genes changed by D-amygdalin, we paid attention to cell cycle-related genes, and particularly cell cycle regulator genes; because arrest of cell cycle processing was ideal tactic in remedy for cancer. In our data, expressions of cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B), ataxia telangiectasia mutated (includes complementation groups A, C, and D) (ATM), cyclin-dependent kinase inhibitor 1C (p57, Kip2) (CDKN1C), and CHK1 checkpoint homolog (CHEK1, formally known as CHK1) were increased, while expressions of cyclin-dependent kinase 2 (CDK2), cell division cycle 25A (CDC25A), and cyclin E1 (CCNE1) were decreased. The pattern of these gene expressions were confirmed through RT-PCR. Our results showed that D-amygdalin might control cell cycle regulator genes and arrest S phase of cell cycle in K562 cells as the useful anticancer drug.

Inhibitory effect of Korean Red Ginseng extract on DNA damage response and apoptosis in Helicobacter pylori-infected gastric epithelial cells

  • Kang, Hyunju;Lim, Joo Weon;Kim, Hyeyoung
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.79-85
    • /
    • 2020
  • Background: Helicobacter pylori increases reactive oxygen species (ROS) and induces oxidative DNA damage and apoptosis in gastric epithelial cells. DNA damage activates DNA damage response (DDR) which includes ataxia-telangiectasia-mutated (ATM) activation. ATM increases alternative reading frame (ARF) but decreases mouse double minute 2 (Mdm2). Because p53 interacts with Mdm2, H. pylori-induced loss of Mdm2 stabilizes p53 and induces apoptosis. Previous study showed that Korean Red Ginseng extract (KRG) reduces ROS and prevents cell death in H. pylori-infected gastric epithelial cells. Methods: We determined whether KRG inhibits apoptosis by suppressing DDRs and apoptotic indices in H. pylori-infected gastric epithelial AGS cells. The infected cells were treated with or without KRG or an ATM kinase inhibitor KU-55933. ROS levels, apoptotic indices (cell death, DNA fragmentation, Bax/Bcl-2 ratio, caspase-3 activity) and DDRs (activation and levels of ATM, checkpoint kinase 2, Mdm2, ARF, and p53) were determined. Results: H. pylori induced apoptosis by increasing apoptotic indices and ROS levels. H. pylori activated DDRs (increased p-ATM, p-checkpoint kinase 2, ARF, p-p53, and p53, but decreased Mdm2) in gastric epithelial cells. KRG reduced ROS and inhibited increase in apoptotic indices and DDRs in H. pylori-infected gastric epithelial cells. KU-55933 suppressed DDRs and apoptosis in H. pylori-infected gastric epithelial cells, similar to KRG. Conclusion: KRG suppressed ATM-mediated DDRs and apoptosis by reducing ROS in H. pylori-infected gastric epithelial cells. Supplementation with KRG may prevent the oxidative stress-mediated gastric impairment associated with H. pylori infection.

Protein Kinase C Inhibitor (PKCI)에 의한 방사선 민감도 변화와 c-fos Proto-oncogene의 전사 조절 (Effect of Protein Kinase C Inhibitor (PKCI) on Radiation Sensitivity and c-fos Transcription Activity)

  • 최은경;장혜숙;이연희;박건구
    • Radiation Oncology Journal
    • /
    • 제17권4호
    • /
    • pp.299-306
    • /
    • 1999
  • 목 적 : Ataxia-Telangiectasia (AT) 증은 여러 가지 유전적 결함을 갖는 질병으로 방사선 민감도가 비정상적으로 상승되어 있는 것이 특징이다 AT 환자에서 공통적으로 존재하는 ATM 유전자는 현재까지 방사선 신호전달에 관여하는 것으로 알려진 Pl-3 kinase와 유사한 구조임이 알려져 ATM이 방사선 신호전달경로에 중요한 작용을 할 것으로 추정하게 되었다. 본 연구에서는 AT 세포와 정상세포에 PKCI를 과발현 시킴으로써 방사선 신호전달에 관여하는 PKC를 억제하여 이것이 방사선 민감도에 미치는 영향을 관찰하고, 방사선에 의해 유도되는 early response gene인 c-fos transcription의 차이를 측정하여 ATM과 PKCI에 의한 신호전달이 c-fos 유전자 전사에 미치는 영향을 분석하고자 하였다. 대상 및 방법 : PKCI expression vector를 작제한 후 정상세포인 LM217과 AT세포인 AT5BIVA에 transfection 시킨 후 plasmid의 genomic DNA에 결합된 것은 polymerase chain reaction (PCR) 방법으로 확인하였고 PKCI의 mRNA 발현 여부는 northern blotting으로 확인하였다. 방사선 민감도는 아포토시스로 측정하였으며 PKCI가 과발현된 각 세포주에 5 Gy의 방사선을 조사한 후 48시간에 세포를 모아 TUNEL방법으로 아포토시스 세포의 수를 측정하였다. c-fos 유전자의 전사는 reporter 유전자로 c-fos CAT plsmid를 $\beta$-gal expression vector와 같이 각 세포주에 transfection 시키고 36시간이 지난 후 CAT assay를 하여 activity를 측정하고 동시에 $\beta$-gal assay를 시행하여 transfection 효율을 보정해 주었다. PKCI, Ras의 영향을 보기 위하여는 PKCI, Ras expression vector와 c-fos CAT plasmid를 cotransfection하고 CAT activity로 측정 하였다. 결 과 : 이 실험의 결과 LM과 AT 세포에서 PKCI가 방사선 민감도에 미치는 영향과 c-fos 전사에 미치는 영향을 처음으로 보여주었다. PKCI의 과발현이 LM 세포에서는 방사선 민감도를 증가시켰지만 AT세포에서는 오히려 약간 감소시키는 작용을 나타내었다. c-fos 전사는 AT 세포에서 LM 세포에 비하여 70배 낮게 나타났는데 PKCI가 과발현 됨으로써 LM 에서는 c-fos의 전사가 감소되었지만 AT 세포에서는 영향이 없었다. Ras 단백으로 c-fos를 유도시키고 여기에 PKCI 발현 백터를 contransfection 하면 LM세포에서는 induction 이 감소되었지만 AT 세포에서는 영향이 없었다. 즉 LM과 AT 세포에서의 PKCI에 의한 반응의 차이는 Ras와 관련된 signal transduction pathway라는 것을 알 수 있었다. 결 론 : PKCI는 정상세포에서는 방사선에 의한 세포 손상을 증가시키지만 AT 세포에서는 별 영향을 보이지 않는 것을 알 수 있었으며, 두 세포간의 이러한 차이는 c-fos proto-oncogene의 전사차이로 설명할 수 있겠다. 이러한 차이가 AT 세포의 방사선 민감도의 한 원인일 것으로 생각된다.

  • PDF