• Title/Summary/Keyword: AtMAP65-1

Search Result 43, Processing Time 0.029 seconds

The Bacillus subtilis Genome Sequencing Project in Korea: Sequence Analysis of the 53 kb DNA Fragment at 180$^{\circ}$-185$^{\circ}$- of B. subtilis 168 Chromosome (한국에서의 고초균 유전체 연구: Bacillus subtilis 염색체상 180$^{\circ}$-185$^{\circ}$-부위 53 kb DNA 단편의 염기서열 분석)

  • 김사열;최수근;정영미;신병식;박승환
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.23-33
    • /
    • 1998
  • The entire sequence of a 4,214,810 bp genome of the Bacillus subtilis 168 has been determined by an international project, and the completion has been announced on July 19, 1997. For the sequencing project an international consortium was established and 25 European, 7 Japanese laboratories, 2 biotechnology companies, and our laboratory participated in the project. Within this framework we determined the complete nucleotide sequence of a 53,289 bp fragment upstream of the odhA gene (181 $^{\circ}$) of the B. subtilis 168 chromosome. On the basis of the published DNA sequences of the B. subtilis sspC and odhA genes, we obtained genomic fragments by plasmid rescue and long-range PCR. The sequenced fragment contains 56 putative open reading frames (designated yojA-yolI and 9 known genes (sspC, cge cluster, orfE5, orfRMl and odhA), in which we found many interesting features. In addition, the entire nucleotide sequence of a 53,289 bp region enabled us to revise the current genetic map of this region.

  • PDF

Analysis of Observation Environment with Sky Line and Skyview Factor using Digital Elevation Model (DEM), 3-Dimensional Camera Image and Radiative Transfer Model at Radiation Site, Gangneung-Wonju National University (수치표고모델, 3차원 카메라이미지자료 및 복사모델을 이용한 Sky Line과 Skyview Factor에 따른 강릉원주대학교 복사관측소 관측환경 분석)

  • Jee, Joon-Bum;Zo, Il-Sung;Kim, Bu-Yo;Lee, Kyu-Tae;Jang, Jeong-Pil
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.61-74
    • /
    • 2019
  • To investigate the observational environment, sky line and skyview factor (SVF) are calculated using a digital elevation model (DEM; 10 m spatial resolution) and 3 dimensional (3D) sky image at radiation site, Gangneung-Wonju National University (GWNU). Solar radiation is calculated using GWNU solar radiation model with and without the sky line and the SVF retrieved from the 3D sky image and DEM. When compared with the maximum sky line elevation from Skyview, the result from 3D camera is higher by $3^{\circ}$ and that from DEM is lower by $7^{\circ}$. The SVF calculated from 3D camera, DEM and Skyview is 0.991, 0.998, and 0.993, respectively. When the solar path is analyzed using astronomical solar map with time, the sky line by 3D camera shield the direct solar radiation up to $14^{\circ}$ with solar altitude at winter solstice. The solar radiation is calculated with minutely, and monthly and annual accumulated using the GWNU model. During the summer and winter solstice, the GWNU radiation site is shielded from direct solar radiation by the west mountain 40 and 60 minutes before sunset, respectively. The monthly difference between plane and real surface is up to $29.18M\;m^{-2}$ with 3D camera in November, while that with DEM is $4.87M\;m^{-2}$ in January. The difference in the annual accumulated solar radiation is $208.50M\;m^{-2}$ (2.65%) and $47.96M\;m^{-2}$ (0.63%) with direct solar radiation and $30.93M\;m^{-2}$ (0.58%) and $3.84M\;m^{-2}$ (0.07%) with global solar radiation, respectively.

Development of Field Scale Model for Estimating Garlic Growth Based on UAV NDVI and Meteorological Factors

  • Na, Sang-Il;Min, Byoung-keol;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.422-433
    • /
    • 2017
  • Unmanned Aerial Vehicle (UAV) has several advantages over conventional remote sensing techniques. They can acquire high-resolution images quickly and repeatedly. And with a comparatively lower flight altitude, they can obtain good quality images even in cloudy weather. In this paper, we developed for estimating garlic growth at field scale model in major cultivation regions. We used the $NDVI_{UAV}$ that reflects the crop conditions, and seven meteorological elements for 3 major cultivation regions from 2015 to 2017. For this study, UAV imagery was taken at Taean, Changnyeong, and Hapcheon regions nine times from early February to late June during the garlic growing season. Four plant growth parameters, plant height (P.H.), leaf number (L.N.), plant diameter (P.D.), and fresh weight (F.W.) were measured for twenty plants per plot for each field campaign. The multiple linear regression models were suggested by using backward elimination and stepwise selection in the extraction of independent variables. As a result, model of cold type explain 82.1%, 65.9%, 64.5%, and 61.7% of the P.H., F.W., L.N., P.D. with a root mean square error (RMSE) of 7.98 cm, 5.91 g, 1.05, and 3.43 cm. Especially, model of warm type explain 92.9%, 88.6%, 62.8%, 54.6% of the P.H., P.D., L.N., F.W. with a root mean square error (RMSE) of 16.41 cm, 9.08 cm, 1.12, 19.51 g. The spatial distribution map of garlic growth was in strong agreement with the field measurements in terms of field variation and relative numerical values when $NDVI_{UAV}$ was applied to multiple linear regression models. These results will also be useful for determining the UAV multi-spectral imagery necessary to estimate growth parameters of garlic.

Optimization of Solvent Extraction Process on the Functional Components from Portulaca oleracea Using a Response Surface Methodology (쇠비름의 유용성분 환류추출공정의 최적화)

  • Jo, In-Hee;Kim, Tae-Yeon;Ma, Ji-Bock;Lee, Jin-Ju;Lee, Hyo-Jeong;Choi, Yong-Hee
    • Current Research on Agriculture and Life Sciences
    • /
    • v.29
    • /
    • pp.83-89
    • /
    • 2011
  • Various functional and useful components in Portulaca oleracea were extracted with ethanol and the optimum solvent conditions were set by monitoring of response surface methodology(RSM). A central composite design for optimization was applied to investigate the effects of the three independent variables of extraction temperature, ethanol concentration, and extraction time, on dependent variables including total phenolics, electron-donating ability, brown clolor and total flavonoids of Portulaca oleracea. The content of total phenol was essentially unaffected by extraction time or extraction temperature, but it was highly influenced by ethanol concentration. The maximum total phenol content was 31.70mg/mL obtained at 45.84% of ethanol concentration, $79.66^{\circ}C$, and after 2.67hr of extraction. Electron-donating ability (EDA) was affected by ethanol concentration and the maximum EDA was 74.67mg/mL at 52.95% ethanol concentration, $52.33^{\circ}C$ and 4.84hr of extration time. The browning color was rarely affected by extraction time but, it was highly influenced by ethanol concentration and extraction temperature. The maximum extent of browning color was obtained at 97.75% of ethanol concentraion, $65.88^{\circ}C$ and 2.93hr of extraction time. The content of total flavonoid was significantly influenced by extraction time, and the maximum total flavonoid level was 58.28mg/mL obtained at 96.62% ethanol concentration, $61.87^{\circ}C$ after 3.70hr of extraction. As a result, The optimal conditions for effective extraction were predicted as follows, 70.3% of ethanol concentration, $62.1^{\circ}C$ of extraction temperature and 3.3hr of extraction time.

  • PDF

A study on the range of native seed habitat analysis using Seedzones and MaxEnt (잠정종자이동구역과 종분포모형을 이용한 자생 종자 분포 범위 연구)

  • Kim, Chae-Young;Kim, Whee-Moon;Song, Won-Kyong;Choi, Jaeyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.1
    • /
    • pp.57-74
    • /
    • 2022
  • Seed zones were constructed using temperature and precipitation data for the Korean Peninsula and were described as 65 zones. Seed zones for South Korea were reclassified, and they were classified into 34 districts. This study was conducted to define the spread of 5 native seed species (Pinus densiflora, Quercus acutissima, Quercus variabilis, Acer pictum, Carpinus tschonoskii) by linking the seed zones with MaxEnt. The emergence point of native seeds was acquired through the 1:5,000 Forest Type Map and the 4th national natural environment survey data. Based on the MaxEnt result, regions with a habitat probability of 0.5 or more were extracted and overlapped with seed zones to identify the native seed habitat. After analyzing the climate regions with high habitat density, regions with high habitat density of native seeds for each administrative district were identified. In the case of Pinus densiflora, Quercus acutissima, and Quercus variabilis, the Winter minimum temperature(WMT) -9.4~-6.6℃, Annual Heat:Moisture(AH:M) 19~24℃/m was 37%, 43%, and 34%, respectively. occupied the largest area. In Acer pictum, WMT -6.6~-3.8℃ and AH:M 16~19℃/m accounted for 42% of the area, and Carpinus tschonoskii had WMT -3.8~-1.1℃, AH:M <16℃/m Districts accounted for the largest area at 33%. The regions with high density of Pinus densiflora, Quercus acutissima, and Quercus variabilis by administrative district were distributed in high density in Seoul, Southern Gyeonggi-do, Chungcheong-do, and Gyeongsangbuk-do. Acer pictum was distributed in high density in Jeolla-do and Gyeongsang-do, and Carpinus tschonoskii in Jeju, Jeollanam-do and Gyeongsangnam-do. Through this study, seed zones for each of the 5 native seeds were established, and it is expected to provide basic data for the management of native seeds.

Development of a GIS-based Computer Program to Design Countermeasures against Debris Flows (GIS기반 토석류 산사태 대응공법 설계 프로그램 개발)

  • Song, Young-Suk;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2013
  • We developed a computer program (CDFlow v. 1.0) to design countermeasures against debris flows in natural terrain. The program can predict the probability of landslides occurring in natural terrain and can estimate the zone of damage caused by a debris flow. It can also be used to design the location and size of countermeasures against the debris flow. The program is run using the ArcGIS Engine, which is one of the most well-known Geographic Information System (GIS) tools for developers. The quasi-dynamic wetness index and the infinite slope stability equation were applied to predict landslide probability as a type of slope safety factor. The calculated safety factor was compared with the required safety factor, and areas of high probable potential for landslides were then selected and represented on the digital map. The volume of debris flow was estimated using these areas of high probable potential for landslides and soil depth. The accumulated volume of debris flow can be calculated along the flow channel. To assess the accuracy of the program, it was applied to a real landslide site at Deoksan-ri, Inje-gun, Kangwon-Province, where four debris barriers have been installed in the watershed of the site. The results of soil tests and a field survey indicate that the program has great potential for estimating probable landslide areas and the trajectory of debris flows. Calculation of the capacity volume of existing debris barriers revealed that they had insufficient capacity to store the calculated amount of debris flow. Therefore, this program enables a rational estimation of the optimal location and size of debris barriers.

Selection of Optimal Varieties Suitable for Indoor Cultivation Considering the Growth and Functional Content of Agastache Species (배초향의 생장과 기능성 물질 함량을 고려한 실내재배 적합 최적 품종 선정)

  • Do, Jong Won;Noh, Seung Won;Bok, Gwon Jeong;Lee, Hyun Joo;Lee, Jong Won;Park, Jong Seok
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.202-208
    • /
    • 2020
  • The objective of this study was to select the right species among Agastache in the family Lamiaceae as the result of growth analysis and functional substance analysis. Among 22 species of Agastache, five species (Agastache cana, Agastache foeniculum, Agastache rugosa 'Spike Blue', Agastache rugosa 'Spike Snow', Agastache rupestris) were selected by referring to United States Department of Agriculture (USDA)'s plant hardiness zone area and Korea's one based on USDAs. These plants were cultured at 24 ± 1℃ and 18 ± 1℃ (day and night temperatures, respectively) and 65 ~ 75% relative humidity in a hydroponic culture system for 4 weeks. In terms of growth analysis experiment, stem length, root length, leaf width, leaf area, leaf number, SPAD value, and fresh and dry weights of shoots and roots were measured. The results showed that A. rugosa SS and A. rugosa SB have a higher overall balance value than other species. When compared functional substance value (rosmarinic acid, tilianin, and acacetin) of five species, A. rugosa SS and A. rugosa SB are significantly higher than other species in Agastache. It seems to be directly proportional to the growth analysis results. When considering the growth and functional substance part comprehensively, A. rugosa SS and A. rugosa SB are the most optimal high-value species among Agastache.

AKARI FAR-INFRARED ALL-SKY SURVEY MAPS

  • Doi, Yasuo;Komugi, Shinya;Kawada, Mitsunobu;Takita, Satoshi;Arimatsu, Ko;Ikeda, Norio;Kato, Daisuke;Kitamura, Yoshimi;Nakagawa, Takao;Ootsubo, Takafumi;Morishima, Takahiro;Hattori, Makoto;Tanaka, Masahiro;White, Glenn J.;Etxaluze, Mireya;Shibai, Hiroshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.111-116
    • /
    • 2012
  • Far-infrared observations provide crucial data for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since most of its energy is emitted between ~ 100 and $200{\mu}m$. We present the first all-sky image from a sensitive all-sky survey using the Japanese AKARI satellite, in the wavelength range $50-180{\mu}m$. Covering > 99% of the sky in four photometric bands with four filters centred at $65{\mu}m$, $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ wavelengths, this achieved spatial resolutions from 1 to 2 arcmin and a detection limit of < 10 MJy $sr^{-1}$, with absolute and relative photometric accuracies of < 20%. All-sky images of the Galactic dust continuum emission enable astronomers to map the large-scale distribution of the diffuse ISM cirrus, to study its thermal dust temperature, emissivity and column density, and to measure the interaction of the Galactic radiation field and embedded objects with the surrounding ISM. In addition to the point source population of stars, protostars, star-forming regions, and galaxies, the high Galactic latitude sky is shown to be covered with a diffuse filamentary-web of dusty emission that traces the potential sites of high latitude star formation. We show that the temperature of dust particles in thermal equilibrium with the ambient interstellar radiation field can be estimated by using $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ data. The FIR AKARI full-sky maps provide a rich new data set within which astronomers can investigate the distribution of interstellar matter throughout our Galaxy, and beyond.

Geometry and Kinematics of the Yeongdeok Fault in the Cretaceous Gyeongsang Basin, SE Korea (한반도 동남부 백악기 경상분지 내 영덕단층의 기하와 운동학적 특성)

  • Seo, Kyunghan;Ha, Sangmin;Lee, Seongjun;Kang, Hee-Cheol;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.171-193
    • /
    • 2019
  • This study aims to identify the geometry and internal structures of the Yeongdeok Fault, a branch fault of the Yangsan Fault, by detailed mapping and to characterize its kinematics by analyzing the attitudes of sedimentary rocks adjacent to the fault, slip data on the fault surfaces, and anisotropy of magnetic susceptibility (AMS) of the fault gouges. The Yeongdeok Fault, which shows a total extension of 40 km on the digital elevation map, cuts the Triassic Yeongdeok Granite and the Cretaceous sedimentary and volcanic rocks with about 8.1 km of dextral strike-slip offset. The NNW- or N-S-striking Yeongdeok Fault runs as a single fault north of Hwacheon-ri, Yeongdeok-eup, but south of Hwacheon-ri it branches into two faults. The western one of these two faults shows a zigzag-shaped extension consisting of a series of NNE- to NE- and NNW-striking segments, while the eastern one is extended south-southeastward and then merged with the Yangsan Fault in Gangu-myeon, Yeongdeok-gun. The Yeongdeok Fault dips eastward with an angle of > $65^{\circ}$ at most outcrops and shows its fault cores and damage zones of 2~15 m and of up to 180 m wide, respectively. The fault cores derived from several different wall rocks, such as granites and sedimentary and volcanic rocks, show different deformation patterns. The fault cores derived from granites consist mainly of fault breccias with gouge zones less than 10 cm thick, in which shear deformation is concentrated. While the fault cores derived from sedimentary rocks consist of gouges and breccia zones, which anastomose and link up each other with greater widths than those derived from granites. The attitudes of sedimentary rocks adjacent to the fault become tilted at a high angle similar to that of the fault. The fault slip data and AMS of the fault gouges indicate two main events of the Yeongdeok Fault, (1) sinistral strike-slip under NW-SE compression and then (2) dextral strike-slip under NE-SW compression, and shows the overwhelming deformation feature recorded by the later dextral strike-slip. Comparing the deformation history and features of the Yeongdeok Fault in the study area with those of the Yangsan Fault of previous studies, it is interpreted that the two faults experienced the same sinistral and dextral strike-slip movements under the late Cretaceous NW-SE compression and the Paleogene NE-SW compression, respectively, despite the slight difference in strike of the two faults.

Quality Changes of 'Baumkuchen' Cake with Modified Atmosphere Packaging during Storage (변형기체포장 처리에 따른 '바움쿠헨' 케이크의 저장 중 품질 특성 변화)

  • Myungho Lee;Minhwi Kim;Youn Suk Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.87-94
    • /
    • 2023
  • Fresh bakery products are widely consumed worldwide and therefore particular requirements for their quality characteristics have been established. The shelf life of bakery products is mainly subjected to microbial spoilage and staling. This study investigated the optimum conditions of modified atmosphere packaging (MAP) application to extend the shelf life of the bakery products. The gas conditions of the headspace in 'Baumkuchen' cake were 0, 30, 70, and 100% CO2 concentrations and stored at 30℃ for 5 days. The bakery samples were evaluated weight loss, hardness, color change, pH and total aerobic bacteria, yeast and molds count throughout the storage period. Values of the weight loss and hardness were increased over the storage period, meanwhile pH was significantly decreased. However, no significant color changes were observed during storage. It was also found no significant difference between the different gas treatments. Total aerobic bacteria count of the stored samples after day 5 was increased by 6.94 log CFU/g in the air filled package, compared to 6.20 log CFU/g in the 100% CO2 filled package and 6.02 log CFU/g in the 70% CO2 filled package. Yeast and molds count were 3.65 log CFU/g in air filled package, 2.66 log CFU/g in 100% CO2 filled package, 2.64 log CFU/g in 70% CO2 filled package, 2.86 log CFU/g in 30% CO2 filled package and 3.31 log CFU/g in 100% N2 filled package on day 2. In conclusion, it was shown that 70% and 100% CO2 treatments in the package were effective to reduce microbial growth.