• Title/Summary/Keyword: Asymptotically Stable

Search Result 142, Processing Time 0.019 seconds

Modified Lorenz Chaos Synchronization Via Active Sliding Mode Controller (능동 슬라이딩 모드 제어기를 이용한 변형된 Lorenz 카오스 동기화)

  • Ryu, Ki-Tak;Lee, Yun-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.16-23
    • /
    • 2018
  • Chaos is one of the most significant topics in nonlinear science, and has been intensively studied since the Lorenz system was introduced. One characteristic of a chaotic system is that the signals produced by it do not synchronize with any other system. It therefore seems impossible for two chaotic systems to synchronize with each other, but if the two systems exchange information in just the right way, they can synchronize. This paper addresses the problem of synchronization in a modified Lorenz chaotic system based on active control, sliding mode control, and the Lyapunov stability theory. The considered synchronization scheme consists of identical drive and response generalized systems coupled with linear state error variables. For this, a brief overview of the modified Lorenz chaotic system is given. Then, control rules are derived for chaos synchronization via active control and slide mode control theory, with a strategy for solving the chattering problem. The asymptotic stability of the overall feedback system is established using the Lyapunov stability theory. A set of computer simulation works is presented graphically to confirm the validity of the proposed method.

Digital Implementation of Backing up control of Truck-trailer type Mobile Robots (트럭-트레일러 타입의 모바일로봇을 위한 귀환 제어기 설계)

  • Ku, Ja-Yl;Park, Chang-Woo
    • 전자공학회논문지 IE
    • /
    • v.46 no.2
    • /
    • pp.33-45
    • /
    • 2009
  • In this paper, the implementation of the backward movement control of a truck-trailer type mobile robot using fuzzy model based control scheme considering the practical constraints, computing time-delay and quantization is presented. We propose the fuzzy feedback controller whose output is delayed with unit sampling period and predicted. The analysis and the design problem considering the computing time-delay become very easy because the proposed controller is syncronized with the sampling time. Also, the stability analysis is made when the quantization exists in the implementation of the fuzzy control architectures and it is shown that if the trivial solution of the fuzzy control system without quantization is asymptotically stable, then the solutions of the fuzzy control system with quantization are uniformly ultimately bounded. The experimental results are shown to verify the effectiveness of the proposed scheme.