• Title/Summary/Keyword: Asymptotic regression method

Search Result 50, Processing Time 0.021 seconds

The Identification Of Multiple Outliers

  • Park, Jin-Pyo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.201-215
    • /
    • 2000
  • The classical method for regression analysis is the least squares method. However, if the data contain significant outliers, the least squares estimator can be broken down by outliers. To remedy this problem, the robust methods are important complement to the least squares method. Robust methods down weighs or completely ignore the outliers. This is not always best because the outliers can contain some very important information about the population. If they can be detected, the outliers can be further inspected and appropriate action can be taken based on the results. In this paper, I propose a sequential outlier test to identify outliers. It is based on the nonrobust estimate and the robust estimate of scatter of a robust regression residuals and is applied in forward procedure, removing the most extreme data at each step, until the test fails to detect outliers. Unlike other forward procedures, the present one is unaffected by swamping or masking effects because the statistics is based on the robust regression residuals. I show the asymptotic distribution of the test statistics and apply the test to several real data and simulated data for the test to be shown to perform fairly well.

  • PDF

Comparison of Survival Function Estimators for the Cox's Regression Model using Bootstrap Method (Cox 회귀모형(回歸模型)에서 붓스트랩방법(方法)에 의한 생존함수추정량(生存函數推定量)의 비교연구(比較硏究))

  • Cha, Young-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.4
    • /
    • pp.1-11
    • /
    • 1993
  • The Cox's regression model is frequently used for covariate effects in survival data analysis, But, much of the statistical work has focused on asymptotic behavior so the small sample evaluation has been neglected. In this paper, we compare the small or moderate sample performances of the survival function estimators for the Cox's regression model using bootstrap method. The smoothed PL type estimator and the Link estimator are slightly better than corresponding the PL type estimator and the Nelson type estimator in the sense of the achieved error rates.

  • PDF

Asymptotic optimal bandwidth selection in kernel regression function estimation (커널 회귀함수 추정에서 점근최적인 평활량의 선택에 관한 연구)

  • Seong, Kyoung-Ha;Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.1
    • /
    • pp.19-27
    • /
    • 1998
  • We considered the bandwidth selection method which has asymptotic optimal convergence rate $n^{-1/2}$ in kernel regression function estimation. For the proposed bandwidth selection, we considered Mean Averaged Squared Error as a performance criterion and its Taylor expansion to the fourth order. Then we estimate the bandwidth which minimizes the estimated approximate value of MASE. Finally we show the relative convergence rate between optimal bandwidth and proposed bandwidth.

  • PDF

Bayesian Inference for Censored Panel Regression Model

  • Lee, Seung-Chun;Choi, Byongsu
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.193-200
    • /
    • 2014
  • It was recognized by some researchers that the disturbance variance in a censored regression model is frequently underestimated by the maximum likelihood method. This underestimation has implications for the estimation of marginal effects and asymptotic standard errors. For instance, the actual coverage probability of the confidence interval based on a maximum likelihood estimate can be significantly smaller than the nominal confidence level; consequently, a Bayesian estimation is considered to overcome this difficulty. The behaviors of the maximum likelihood and Bayesian estimators of disturbance variance are examined in a fixed effects panel regression model with a limited dependent variable, which is known to have the incidental parameter problem. Behavior under random effect assumption is also investigated.

Using asymptotic curve number regression method estimation of NRCS curve number and optimum initial loss ratio for small watersheds (점근유출곡선지수법을 이용한 소유역 유출곡선지수 산정 및 최적 초기손실률 결정)

  • Yu, Ji Soo;Park, Dong-Hyeok;Ahn, Jae-Hyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.759-767
    • /
    • 2017
  • Two main parameters of NRCS-CN method are curve numbers and intial loss ratio. They are generally selected according to the guideline of US National Engineering Handbook, however, they might cause errors on estimated runoff in Korea because there are differences between soil types and hydrological characteristics of Korean watersheds and those of United States. In this study, applying asymptotic CN regression method, we suggested eight modified NRCS-CN models to decide optimum runoff estimation model for Korean watersheds. RSR (RMSE-observations standard deviation ratio) and NSE (Nash-Sutcliffe efficiency) were used to evaluate model performance, consequently M6 for gauged basins (Avg. RSR was 0.76, Avg. NSE was 0.39) and M7 for ungauged basins (Avg. RSR was 0.82, Avg. NSE was 0.31) were selected. Furthermore it was observed that initial loss ratios ranging from 0.01 to 0.10 were more adequate than the fixed ${\lambda}=0.20$ in most of basins.

Restricted maximum likelihood estimation of a censored random effects panel regression model

  • Lee, Minah;Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.4
    • /
    • pp.371-383
    • /
    • 2019
  • Panel data sets have been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Maximum likelihood (ML) may be the most common statistical method for analyzing panel data models; however, the inference based on the ML estimate will have an inflated Type I error because the ML method tends to give a downwardly biased estimate of variance components when the sample size is small. The under estimation could be severe when data is incomplete. This paper proposes the restricted maximum likelihood (REML) method for a random effects panel data model with a censored dependent variable. Note that the likelihood function of the model is complex in that it includes a multidimensional integral. Many authors proposed to use integral approximation methods for the computation of likelihood function; however, it is well known that integral approximation methods are inadequate for high dimensional integrals in practice. This paper introduces to use the moments of truncated multivariate normal random vector for the calculation of multidimensional integral. In addition, a proper asymptotic standard error of REML estimate is given.

Effect of Dimension in Optimal Dimension Reduction Estimation for Conditional Mean Multivariate Regression (다변량회귀 조건부 평균모형에 대한 최적 차원축소 방법에서 차원수가 결과에 미치는 영향)

  • Seo, Eun-Kyoung;Park, Chong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.107-115
    • /
    • 2012
  • Yoo and Cook (2007) developed an optimal sufficient dimension reduction methodology for the conditional mean in multivariate regression and it is known that their method is asymptotically optimal and its test statistic has a chi-squared distribution asymptotically under the null hypothesis. To check the effect of dimension used in estimation on regression coefficients and the explanatory power of the conditional mean model in multivariate regression, we applied their method to several simulated data sets with various dimensions. A small simulation study showed that it is quite helpful to search for an appropriate dimension for a given data set if we use the asymptotic test for the dimension as well as results from the estimation with several dimensions simultaneously.

Numerical studies on approximate option prices (근사적 옵션 가격의 수치적 비교)

  • Yoon, Jeongyoen;Seung, Jisu;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.243-257
    • /
    • 2017
  • In this paper, we compare several methods to approximate option prices: Edgeworth expansion, A-type and C-type Gram-Charlier expansions, a method using normal inverse gaussian (NIG) distribution, and an asymptotic method using nonlinear regression. We used two different types of approximation. The first (called the RNM method) approximates the risk neutral probability density function of the log return of the underlying asset and computes the option price. The second (called the OPTIM method) finds the approximate option pricing formula and then estimates parameters to compute the option price. For simulation experiments, we generated underlying asset data from the Heston model and NIG model, a well-known stochastic volatility model and a well-known Levy model, respectively. We also applied the above approximating methods to the KOSPI200 call option price as a real data application. We then found that the OPTIM method shows better performance on average than the RNM method. Among the OPTIM, A-type Gram-Charlier expansion and the asymptotic method that uses nonlinear regression showed relatively better performance; in addition, among RNM, the method of using NIG distribution was relatively better than others.

Partially linear multivariate regression in the presence of measurement error

  • Yalaz, Secil;Tez, Mujgan
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.511-521
    • /
    • 2020
  • In this paper, a partially linear multivariate model with error in the explanatory variable of the nonparametric part, and an m dimensional response variable is considered. Using the uniform consistency results found for the estimator of the nonparametric part, we derive an estimator of the parametric part. The dependence of the convergence rates on the errors distributions is examined and demonstrated that proposed estimator is asymptotically normal. In main results, both ordinary and super smooth error distributions are considered. Moreover, the derived estimators are applied to the economic behaviors of consumers. Our method handles contaminated data is founded more effectively than the semiparametric method ignores measurement errors.

Comparison of methods of approximating option prices with Variance gamma processes (Variance gamma 확률과정에서 근사적 옵션가격 결정방법의 비교)

  • Lee, Jaejoong;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.181-192
    • /
    • 2016
  • We consider several methods to approximate option prices with correction terms to the Black-Scholes option price. These methods are able to compute option prices from various risk-neutral distributions using relatively small data and simple computation. In this paper, we compare the performance of Edgeworth expansion, A-type and C-type Gram-Charlier expansions, a method of using Normal inverse gaussian distribution, and an asymptotic method of using nonlinear regression through simulation experiments and real KOSPI200 option data. We assume the variance gamma model in the simulation experiment, which has a closed-form solution for the option price among the pure jump $L{\acute{e}}vy$ processes. As a result, we found that methods to approximate an option price directly from the approximate price formula are better than methods to approximate option prices through the approximate risk-neutral density function. The method to approximate option prices by nonlinear regression showed relatively better performance among those compared.