• Title/Summary/Keyword: Asymptotic efficiency

Search Result 156, Processing Time 0.025 seconds

A Detection Scheme for Random Signals under Dependent Noise Environment (종속 잡음 환경에서 확률 신호 검파 방식)

  • Kim, Kwang-Soon;Won, Dae-Han;Song, Iick-Ho;Yun, Hyung-Sik;Lee, Ju-Mi;Kim, Sun-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.1
    • /
    • pp.69-75
    • /
    • 2000
  • In this paper, we consider the problem of discrete-time random signal detection problem under the presence of additive noise exhibiting weak dependence The test statistic of the locally optimum detector for correlated random signals under a weakly dependent noise model is derived The performance characteristic of the locally optimum detector is analyzed and compared with that of the square-law detector in terms of the asymptotic relative efficiency.

  • PDF

A Rank-Based Signal Detector in a Weakly Dependent Noise Model (약의존성 잡음모형에서 순위를 바탕으로 한 신호검파기)

  • Kim, Kwang-Soon;Yoon, Seok-Ho;Park, So-Ryoung;Lee, Joo-Shik;Song, Iick-Ho;Kim, Sun-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.1
    • /
    • pp.76-82
    • /
    • 2000
  • In this paper, we consider nonparametric signal detection problems under the presence of additive noise exhibiting weak dependence We derive the test statistics of the locally optimum rank detectors under a weakly dependent noise model for known and random signal cases The performance characteristic of the locally optimum rank detectors are analyzed in terms of asymptotic relative efficiency.

  • PDF

On the origin of Na-O anticorrelation in globular clusters

  • Kim, Jaeyeon;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.49.1-49.1
    • /
    • 2017
  • In order to investigate the origin of multiple stellar populations in the halo and bulge of the Milky Way, we have constructed chemical evolution models for the low-mass proto-Galactic subsystems such as globular clusters (GCs). Unlike previous studies, we assume that supernova blast waves undergo blowout without expelling the pre-enriched gas, while relatively slow winds of massive stars, together with the winds and ejecta from low and intermediate mass asymptotic giant branch stars, are all locally retained in these less massive systems. We first applied these models to investigate the origin of super-helium-rich red clump stars in the metal-rich bulge as recently suggested by Lee et al. (2015). We find that chemical enrichments by the winds of massive stars can naturally reproduce the required helium enhancement (dY/dZ = 6) for the second generation stars. Disruption of these "building blocks" in a hierarchical merging paradigm would have provided helium enhanced stars to the bulge field. Interestingly, we also find that the observed Na-O anticorrelation in metal-poor GCs can be reproduced, when multiple episodes of starbursts are allowed to continue in these subsystems. Specific star formation history with decreasing time intervals between the stellar generations, however, is required to obtain this result, as would be expected from the orbital evolution of these subsystems in a proto-Galaxy. The "mass budget problem" is also much alleviated by our models without ad-hoc assumptions on star formation efficiency and initial mass function.

  • PDF

New insights on the origin of multiple stellar populations in globular clusters

  • Kim, Jaeyeon;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.46.1-46.1
    • /
    • 2018
  • In order to investigate the origin of multiple stellar populations in the halo and bulge of the Milky Way, we have constructed chemical evolution models for the low-mass proto-Galactic subsystems such as globular clusters. Unlike previous studies, we assume that supernova blast waves undergo blowout without expelling the pre-enriched gas, while relatively slow winds of massive stars, together with the winds and ejecta from low and intermediate mass asymptotic-giant-branch stars, are all locally retained in these less massive systems. We find that the observed Na-O anti-correlations in metal-poor GCs can be reproduced when multiple episodes of starbursts are allowed to continue in these subsystems. A specific form of star formation history with decreasing time intervals between the stellar generations, however, is required to obtain this result, which is in good agreement with the parameters obtained from our stellar evolution models for the horizontal-branch. The "mass budget problem" is also much alleviated by our models without ad-hoc assumptions on star formation efficiency and initial mass function. We also applied these models to investigate the origin of super helium-rich red clump stars in the metal-rich bulge as recently suggested by Lee et al. (2015). We find that chemical enrichments by the winds of massive stars can naturally reproduce the required helium enhancement (dY/dZ = 6) for the second-generation stars. Disruption of proto-globular clusters in a hierarchical merging paradigm would have provided helium enhanced stars to the bulge field.

  • PDF

Interference Mitigation Scheme by Antenna Selection in Device-to-Device Communication Underlaying Cellular Networks

  • Wang, Yuyang;Jin, Shi;Ni, Yiyang;Wong, Kai-Kit
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.429-438
    • /
    • 2016
  • In this paper, we investigate an interference mitigation scheme by antenna selection in device-to-device (D2D) communication underlaying downlink cellular networks. We first present the closed-form expression of the system achievable rate and its asymptotic behaviors at high signal-to-noise ratio (SNR) and the large antenna number scenarios. It is shown that the high SNR approximation increases with more antennas and higher ratio between the transmit SNR at the base station (BS) and the D2D transmitter. In addition, a tight approximation is derived for the rate and we reveal two thresholds for both the distance of the D2D link and the transmit SNR at the BS above which the underlaid D2D communication will degrade the system rate. We then particularize on the small cell setting where all users are closely located. In the small cell scenario, we show that the relationship between the distance of the D2D transmitting link and that of the D2D interfering link to the cellular user determines whether the D2D communication can enhance the system achievable rate. Numerical results are provided to verify these results.

Method of Analyzing the ISAR image of Electrically Large Objects Partially Coated with RAM Using PO Technique (PO 기법을 이용한 부분 코팅된 전기적 대형물체의 ISAR 해석 방법)

  • Noh, Yeong-Hoon;Kim, Woobin;Yook, Jong-Gwan;Hong, Ic-Pyo;Kim, Yoon-Jae;Oh, Wonseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.328-336
    • /
    • 2020
  • This paper presents an asymptotic analysis method using the PO(physical optics) approximation technique to analyze the scattering contribution of an electrically large object partially coated with a radar absorbing material(RAM). By using the feature of the PO technique that can calculate the equivalent current value for each mesh independently, instead of analyzing the entire structure, scattering analysis was performed only by calculating the current on the area where the RAM coating is applied. By the numerical examples, the accuracy and the computation time of the proposed method were verified, and the computational efficiency of inverse synthetic aperture radar(ISAR) of the electrically large objects that require enormous resources is improved.

DL-RRT* algorithm for least dose path Re-planning in dynamic radioactive environments

  • Chao, Nan;Liu, Yong-kuo;Xia, Hong;Peng, Min-jun;Ayodeji, Abiodun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.825-836
    • /
    • 2019
  • One of the most challenging safety precautions for workers in dynamic, radioactive environments is avoiding radiation sources and sustaining low exposure. This paper presents a sampling-based algorithm, DL-RRT*, for minimum dose walk-path re-planning in radioactive environments, expedient for occupational workers in nuclear facilities to avoid unnecessary radiation exposure. The method combines the principle of random tree star ($RRT^*$) and $D^*$ Lite, and uses the expansion strength of grid search strategy from $D^*$ Lite to quickly find a high-quality initial path to accelerate convergence rate in $RRT^*$. The algorithm inherits probabilistic completeness and asymptotic optimality from $RRT^*$ to refine the existing paths continually by sampling the search-graph obtained from the grid search process. It can not only be applied to continuous cost spaces, but also make full use of the last planning information to avoid global re-planning, so as to improve the efficiency of path planning in frequently changing environments. The effectiveness and superiority of the proposed method was verified by simulating radiation field under varying obstacles and radioactive environments, and the results were compared with $RRT^*$ algorithm output.

An adaptive meshfree RPIM with improved shape parameter to simulate the mixing of a thermoviscoplastic material

  • Zouhair Saffah;Mohammed Amdi;Abdelaziz Timesli;Badr Abou El Majd;Hassane Lahmam
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.239-249
    • /
    • 2023
  • The Radial Point Interpolation Method (RPIM) has been proposed to overcome the difficulties associated with the use of the Radial Basis Functions (RBFs). The RPIM has the following properties: Simple implementation in terms of boundary conditions as in the Finite Element Method (FEM). A less expensive CPU time compared to other collocation meshless methods such as the Moving Least Square (MLS) collocation method. In this work, we propose an adaptive high-order numerical algorithm based on RPIM to simulate the thermoviscoplastic behavior of a material mixing observed in the Friction Stir Welding (FSW) process. The proposed adaptive meshfree RPIM algorithm adapts well to the geometric and physical data by choosing a good shape parameter with a good precision. Our numerical approach combines the RPIM and the Asymptotic Numerical Method (ANM). A numerical procedure is also proposed in this work to automatically determine an improved shape parameter for the RBFs. The efficiency of the proposed algorithm is analyzed in comparison with an iterative algorithm.

On Confidence Intervals of Robust Regression Estimators (로버스트 회귀추정에 의한 신뢰구간 구축)

  • Lee Dong-Hee;Park You-Sung;Kim Kee-Whan
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.97-110
    • /
    • 2006
  • Since it is well-established that even high quality data tend to contain outliers, one would expect fat? greater reliance on robust regression techniques than is actually observed. But most of all robust regression estimators suffers from the computational difficulties and the lower efficiency than the least squares under the normal error model. The weighted self-tuning estimator (WSTE) recently suggested by Lee (2004) has no more computational difficulty and it has the asymptotic normality and the high break-down point simultaneously. Although it has better properties than the other robust estimators, WSTE does not have full efficiency under the normal error model through the weighted least squares which is widely used. This paper introduces a new approach as called the reweighted WSTE (RWSTE), whose scale estimator is adaptively estimated by the self-tuning constant. A Monte Carlo study shows that new approach has better behavior than the general weighted least squares method under the normal model and the large data.

Infinite Elements for the Evaluation of Wave Forces (파랑하중 산정을 위한 무한요소)

  • 박우선;윤정방;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.71-80
    • /
    • 1989
  • In this paper, the concept of the infinite element is applied to the linear wave diffraction and radiation problems. The hydrodynamic pressure forces are assumed to be inertially dominated, and viscous effects are neglected. The near field region surrounding the solid body is modelled using the conventional finite elements, and the far field region is represented using the infinite elements .In order to represent the scattered wave potentials in the far field region more accurately, the infinite elements are developed using special shape functions derived from the asymptotic expressions for the analytical eigenseries solution of the scattered waves. The system matrices of the infinite elements are constructed by performing the integration in the infinite direction analytically to achieve computational efficiency. Numerical analyses are carried out for vertical axisymmetric bodies to validate the infinite elements developed here. Comparisons with the results by other available numerical solution methods show that the present method using the infinite elements gives fairly good results. Numerical experiments are per-formed to determine the suitable location of the infinite elements and the appropriate size of the finite elements which directly affect accuracy and efficiency of the solution.

  • PDF