• Title/Summary/Keyword: Asymmetry Vortex

Search Result 18, Processing Time 0.036 seconds

The Ultimate Pattern of Shock-Vortex Interaction

  • Chang, Keun-Shik;Barik, Hrushikesh;Chang, Se-Myong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.337-339
    • /
    • 2008
  • As a shock impinges into a vortex of variable strength, complex shock diffraction can occur. Since a vortex has a fixed rotating direction, the shock wave travelling in one direction creates strong asymmetry in the vortex flow field. The process is that first the shock is divided into two parts by the vortex. One part is moving in the adverse direction opposite to the vortex flow which is captured by the vortex center. The other part is moving in the favorable direction, namely, in the direction same as the vortex flow; it is swung around the vortex, accelerating the vortex flow. In this paper we have investigated numerically using ENO scheme how and why the shock-vortex interaction patterns appear so different for different parametric values. Conclusion is that there are three different types of shock-vortex interaction depending on two related parameters: shock Mach number and vortex Mach number. We present a parameter map by which we can discern what type of interaction pattern appears as a shock impinges into a vortex.

  • PDF

The Ultimate Pattern of Shock-Vortex Interaction

  • Chang, Keun-Shik;Barik, Hrushikesh;Chang, Se-Myong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.337-339
    • /
    • 2008
  • Abstract: As a shock impinges into a vortex of variable strength, complex shock diffraction can occur. Since a vortex has a fixed rotating direction, the shock wave travelling in one direction creates strong asymmetry in the vortex flow field. The process is that first the shock is divided into two parts by the vortex. One part is moving in the adverse direction opposite to the vortex flow which is captured by the vortex center. The other part is moving in the favorable direction, namely, in the direction same as the vortex flow; it is swung around the vortex, accelerating the vortex flow. In this paper we have investigated numerically using ENO scheme how and why the shock-vortex interaction patterns appear so different for different parametric values. Conclusion is that there are three different types of shock-vortex interaction depending on two related parameters: shock Mach number and vortex Mach number. We present a parameter map by which we can discern what type of interaction pattern appears as a shock impinges into a vortex.

  • PDF

Characteristics of Flow past a Sphere in Uniform Shear (균일 전단유동 내에 위치한 구 주위의 유동특성)

  • Kim, Dong-Joo;Choi, Hyung-Seok;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1607-1612
    • /
    • 2004
  • Numerical simulations are performed to investigate the characteristics of flow past a sphere in uniform shear. The Reynolds numbers considered are Re=300, 425 and 480 based on the inlet center velocity and sphere diameter. The non-dimensional shear rate K of the inlet uniform shear is varied from 0 to 0.15. At Re=300, the head of the hairpin vortex loop always locates on the high-velocity side in uniform shear, and the flow maintains the planar symmetry. At Re=425 and 480, the irregularity in the location and strength of the hairpin vortex appearing in uniform inlet flow is much reduced in uniform shear, but the flows still keep the asymmetry for most inlet shear rates. However, in the cases of K=0.075 and 0.1 at Re=425, the flows become planar symmetric and their characteristics of the evolution of the hairpin vortex loops are different from those of asymmetric flows. A hysteresis phenomenon switching from the planar symmetry to the asymmetry (or vice versa) depending on the initial condition is also observed at Re=425.

  • PDF

Variation of Tracer Distribution During the Antarctic Polar Vortex Breakup Shown in ILAS and ILAS-II Data (ILAS와 ILAS-II 자료에서 나타난 남극 와동 붕괴기간의 미량기체 분포변화)

  • Choi, Wookap;Lim, Kyungsoo
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.367-377
    • /
    • 2010
  • Variation of tracer distribution during the vortex-breakup period in the Antarctic region was observed by the data from the Improved Limb Atmospheric Spectrometer (ILAS) and ILAS-II. All four trace species including methane, nitrous oxide, ozone, and water vapor show similar patterns of vertical gradient in spite of different structures of zonal mean mixing ratio. Timings of vortex breakup on each level are estimated by two different methods, and they are compared with zonal standard deviations following the latitude circle of each trace species. Although the tracers have different chemical life times and sink/source, the zonal standard deviation patterns show remarkable similarities. The zonal standard deviation shown here to measure the zonal asymmetry of tracer distribution is believed to diagnose the timing of the Antarctic polar-vortex breakup reasonably well.

The Flow Characteristics in a Shallow Rectangular Tank by Vortex Shedding (보텍스 쉐딩에 의한 얕은 직사각형통 내에서의 유동특성)

  • 서용권;문종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2122-2130
    • /
    • 1993
  • A numerical and experimental study has been performed on the flow in a shallow rectangular tank accompanying a vortex shedding. The model is composed of a rectangular tank with a vertical plate with a length half the width of the tank. The tank is subject to a horizontal sinusoidal oscillation. The numerical analysis shows that the pattern of vortex shedding changes considerably when the Reynolds number $R_e$ is varied from 500 to 7500. It is symmetric for $R_e$ <1500 and asymmetric for $R_e$ > 1500. The kinetic energies of the right-hand and left-hand sides of the vertical plate are used to quantify the degree of the asymmetry. Experimental visualization is carried out at $R_e$ = 3876 and 52000. The development of the streamline pattern at $R_e$ = 3876 is in closer agreement with the numerical result at $R_e$ = 1000 than that at $R_e$ =3876. The asymmetric pattern is observed at $R_e$ = 52000.

DNS of vortex-induced vibrations of a yawed flexible cylinder near a plane boundary

  • Zhang, Zhimeng;Ji, Chunning;Alam, Md. Mahbub;Xu, Dong
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.465-474
    • /
    • 2020
  • Vortex-induced vibrations of a yawed flexible cylinder near a plane boundary are numerically investigated at a Reynolds number Ren= 500 based on normal component of freestream velocity. Free to oscillate in the in-line and cross-flow directions, the cylinder with an aspect ratio of 25 is pinned-pinned at both ends at a fixed wall-cylinder gap ratio G/D = 0.8, where D is the cylinder diameter. The cylinder yaw angle (α) is varied from 0° to 60° with an increment of 15°. The main focus is given on the influence of α on structural vibrations, flow patterns, hydrodynamic forces, and IP (Independence Principle) validity. The vortex shedding pattern, contingent on α, is parallel at α=0°, negatively-yawed at α ≤ 15° and positively-yawed at α ≥ 30°. In the negatively- and positively-yawed vortex shedding patterns, the inclination direction of the spanwise vortex rows is in the opposite and same directions of α, respectively. Both in-line and cross-flow vibration amplitudes are symmetric to the midspan, regardless of α. The RMS lift coefficient CL,rms exhibits asymmetry along the span when α ≠ 0°, maximum CL,rms occurring on the lower and upper halves of the cylinder for negatively- and positively-yawed vortex shedding patterns, respectively. The IP is well followed in predicting the vibration amplitudes and drag forces for α ≤ 45° while invalid in predicting lift forces for α ≥ 30°. The vortex-shedding frequency and the vibration frequency are well predicted for α = 0° - 60° examined.

Magnetization Process in Vortex-imprinted Ni80Fe20/Ir20Mn80 Square Elements

  • Xu, H.;Kolthammer, J.;Rudge, J.;Girgis, E.;Choi, B.C.;Hong, Y.K.;Abo, G.;Speliotis, Th.;Niarchos, D.
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.83-87
    • /
    • 2011
  • The vortex-driven magnetization process of micron-sized, exchange-coupled square elements with composition of $Ni_{80}Fe_{20}$ (12 nm)/$Ir_{20}Mn_{80}$ (5 nm) is investigated. The exchange-bias is introduced by field-cooling through the blocking temperature (TB) of the system, whereby Landau-shaped vortex states of the $Ni_{80}Fe_{20}$ layer are imprinted into the $Ir_{20}Mn_{80}$. In the case of zero-field cooling, the exchange-coupling at the ferromagnetic/antiferromagnetic interface significantly enhances the vortex stability by increasing the nucleation and annihilation fields, while reducing coercivity and remanence. For the field-cooled elements, the hysteresis loops are shifted along the cooling field axis. The loop shift is attributed to the imprinting of displaced vortex state of $Ni_{80}Fe_{20}$ into $Ir_{20}Mn_{80}$, which leads to asymmetric effective local pinning fields at the interface. The asymmetry of the hysteresis loop and the strength of the exchange-bias field can be tuned by varying the strength of cooling field. Micromagnetic modeling reproduces the experimentally observed vortex-driven magnetization process if the local pinning fields induced by exchange-coupling of the ferromagnetic and antiferromagnetic layers are taken into account.