• 제목/요약/키워드: Asymmetric posture

Search Result 36, Processing Time 0.025 seconds

A Study on the Evaluation of Horizontal, Vertical, Asymmetric and Coupling Multipliers of the NIOSH Lifting Equation in Korean Male (한국인 20대 남성의 NIOSH Lifting Equation 계수평가에 관한 연구)

  • Bae, Dong-Chul;Kim, Yong-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.83-88
    • /
    • 2009
  • The objective of this paper was to evaluate the effectiveness of horizontal, vertical, asymmetric and coupling multipliers for manual material handling. Lifting tasks with 5 different horizontal distances ($30{\sim}70cm$) for 6 vertical distances(ankle, knee, waist, elbow, shoulder and head height) were experimented. The muscle activity and muscle exertion level during asymmetric load handling(without trunk flexion) was experimented. Lifting tasks with and without handle tote box for three postures(straight, bending, right angle posture) were experimented. The degrading tendency did not appeared almost in $60{\sim}70cm$ interval's horizontal distance. As a result of ANOVA, MVC paid attention to horizontal and vertical distance but cross effect was insignificant(p<0.01). The change of the MVC according to the horizontal, vertical distance appeared similar from of RWL. The results of normalized MVC measurement were decreased about 16%, 24%, 34% respectively as the asymmetry angle was $30^{\circ}$, $60^{\circ}$, $90^{\circ}$. RMS EMG values of right erector spinae muscles were decreased as the work posture went to $90^{\circ}$ and those of left erector spinae muscles were increased until the asymmetry angle was $40^{\circ}$ but decreased continually over $40^{\circ}$. 7 subjects, activities of left and right latissimus dorsi muscles were maintained constantly, while for remainer, those were irregular. MVC reduced maximum 23% by type of handle. MVC was highest in straight posture, but was lowest in right angle posture. As a result of ANOVA, MVC paid attention to posture, coupling(p<0.01). To all handle types, biceps brachii activity was increased in right angle posture, but reduced in straight posture. Based on the results of this study, it is suggested that the NIOSH guideline should not be directly applied to Korean without reasonable reexamination. In addition, we need to afterward study through an age classification.

Fatigue Patterns on Trunk Muscles at Various Asymmetric Twisting Conditions (비틀림 동작에서의 허리근육의 피로도 패턴)

  • Jo, Yeong-Jin;Kim, Jeong-Ryong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.71-82
    • /
    • 2001
  • Twisting posture in lifting tasks has been identified as a risk factor of low back pain. However, it has been usually estimated in terms of compressive stress or muscular activity. Thus, this study was conducted to predict the influence on muscular fatigue during lifting simulation. Fifteen young and healthy subjects were recruited and performed isometric trunk exertions during upright standing, two-level flexions and five-level asymmetric twisting conditions. EMG signals from five primary trunk muscles in right part of body were collected during 20sec for 45 different lifting conditions. RMS(root mean square) and MPF(mean power frequency) parameters were used to analyze the EMG signals. Twisting postures were significant in right erector spinae(ERSR), right latissimus dorsi(LATR), right internal oblique(INOR) for muscular activities. Especially, when trunk was $30^{\circ}$ CCW twisting posture. ERSR and INOR activities increased respectively by 11% and 3%. Regarding the trunk muscle fatigue, we found that MPF shifts in twisting posture increased 2.3 and 2.6 times for ERSR and INOR muscles respectively. Therefore, It is probable for workers to suffer from low back disorders when they were exposed to a extreme twisting posture during prolonged lifting. This study suggests NIOSH(National Institute for Occupational Safety and Health) lifting equation needs the time-duration multiplier in addition to asymmetric multiplier.

  • PDF

Effect of Flexi-bar Exercise on Postural Alignment and Balance in Asymmetric Posture

  • Um, Ki Mai;Kim, Hyun Sook;Lim, In Hyuk
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.6 no.1
    • /
    • pp.809-814
    • /
    • 2015
  • This study was conducted to identify how a flexi-bar exercise influences body alignment and balance in adults who have asymmetry in their right or left body. In total, 20 participants were separated into the experimental group and the comparison group. Those in the experimental group participated in a flexi-bar exercise for 6 weeks and based on the coronal plane before and after exercise, their body alignment and balance were measured behind the body. The result was those who had participated in a flexi-bar exercise significantly improved their angle of acromion on both sides, the difference in the angle and height of the posterior superior iliac spine on both sides(p<.05), and the balance of the center sagittal plane(p<.05). Through this study, it could be said that participating in a flexi-bar exercise would improve postural alignment and balance of the shoulder and pelvis in adults with asymmetric posture.

A convergence study of the effects of asymmetric standing posture on knee joint position and lower extremity muscle activity in subjects with hyper-extended knee (무릎 과다 폄을 가진 대상자에게 비대칭 선 자세가 무릎 관절 위치와 근활성도에 미치는 영향에 대한 융합적 연구)

  • Jung, Sung-hoon;Ha, Sung-min
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.63-68
    • /
    • 2019
  • The purpose of this study was to investigate the effect of hyper-extended knee and asymmetric standing posture on knee joint position and lower extremity muscle activity. Thirty-three voluntary participants participated and included sixty legs in the study. The sixty legs were divided into two groups: hyper-extended knee and normal group. The muscle activity and knee extension angle were measured. In the asymmetric standing posture, the knee joint extension angle and the muscle activity of the gastrocnemius were statistically significant between the normal group and the hyper-extended knee group. Based on the results, we confirmed that the asymmetric standing posture increases the hyper-extended knee. Therefore, it will contribute to the establishment of therapeutic guide for the subjects with hyper-extended knee to maintain the symmetrical standing posture, and future studies need to be conducted including the effects of the hip joint and ankle joints.

Bio-mechanical Evaluation of Squatting Posture with Asymmetric Trunk Motion (몸통 비틀림 운동을 고려한 쪼그려 앉은 작업자의 요추부 작업부담 평가)

  • Lim, Dae-Seob;Kim, Young-Jin;Lee, Kyoung-Suk;Mun, Joung-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.58-67
    • /
    • 2011
  • A high prevalence of protected horiculture farmer's work-related musculo-skeletal disorders (MSDs) have been reported in precedent studies. One of the tasks required ergonomic intervention to reduce the musculo-skeletal risks is the task of harvesting. The purpose of this study is to evaluate quantitatively the spinal load of worker harvesting with squatting posture to predict and prevent musculo-skeletal risks. Spinal load in Squatting posture with asymmetric trunk motion were analyzed. Before evaluating spinal load on harvesting worker by bio-mechanical approach, it is needed to validate human model. In this study, ADAMS LifeMOD human model shows satisfactory results, comparing with already validated model's results or measured results. While worker reached arms (20%, 40%, 70% arm reach) with various asymmetric trunk motion (0, 45, 90 degree), their spinal loads (extension, twisting and lateral bending moment) were evaluated. In case of extensor moment at lumbo-sacral joint, the more the arm reach got increased, the moment increased. however, in case of twisting moment and lateral bending moment, the more both arm reach and asymmetric trunk motion got increased, the moment increased significantly. The findings of this study suggest that it need to be determine the spinal load, especially twisting, lateral bending moment in evaluating musculo-skeletal workload in squatting posture.

Comparison of Buttock Pressure and Pelvic Tilting Angle During Typing in Subjects With and Without Unilateral Low Back Pain

  • Hwang, Ui-Jae;Kim, Si-Hyun;Choi, Houng-Sik;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2014
  • Asymmetric sitting posture may cause asymmetric buttock pressure and unilateral low back pain (LBP). The purpose of this study was to compare the differences of buttock pressure between both sides, and pelvic angle (sagittal and coronal planes) during typing in a sitting position on a pressure mat (Baltube) in individuals with and without unilateral LBP. Ten subjects with unilateral LBP and ten subjects without unilateral LBP were recruited for this study. Buttock pressure was measured using a pressure mat and pelvic angles were measured using a palpation meter. The subjects performed typing in a sitting posture for 30 minutes. Pressure data were collected and averaged at initial term (from start to first minutes) and final term (last minutes of 30 minutes). Angles of pelvic tilting were measured after 30 minutes typing. Pressure asymmetry values (difference in pressure between both sides) were calculated at the initial and final terms. A two-way analysis of variance was used to compare the differences between the initial and final pressure asymmetry values in subjects with and without unilateral LBP. An independent t-test was applied to compare the pelvic tilt angles between the two groups. To compare the change of pressure from the initial term to the final term between the symptomatic and asymptomatic sides in the unilateral LBP group, a paired t-test was applied. In the unilateral LBP group, the pressure asymmetric value at the final term was significantly greater than that of the initial term (p<.05). The angle of pelvic tilting in coronal plane was significantly greater in the unilateral back pain group compared to the without unilateral LBP group (p<.05), however, there was no significant difference in the angle of pelvic tilting in the sagittal plane between the two groups (p>.05). In the unilateral LBP group, the change of pressure from the initial term to the final term was significantly less in the symptomatic side (-6.90 mmHg) than the asymptomatic side (5.10 mmHg). This asymmetric sitting posture may contribute to unilateral LBP in the sitting position. Further studies are needed to determine if asymmetric weight bearing in sitting causes unilateral LBP or if unilateral back pain causes asymmetric weight bearing, and if the correction of asymmetric weight bearing in sitting can reduce unilateral LBP.

Simulation of Whole Body Posture during Asymmetric Lifting (비대칭 들기 작업의 3차원 시뮬레이션)

  • 최경임
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.11-22
    • /
    • 2002
  • In this study, an asymmetric lifting posture prediction model was developed, which was a three-dimensional model with 12 links and 23 degrees of freedom open kinematic chains. Although previous researchers have proposed biomechanical, psychophysical, or physiological measures as cost functions, for solving redundancy, they lack in accuracy in predicting actual lifting postures and most of them are confined to the two-dimensional model. To develop an asymmetric lifting posture prediction model, we used the resolved motion method for accurately simulating the lifting motion in a reasonable time. Furthermore, in solving the redundant problem of the human posture prediction, a moment weighted Joint Range Availability (JRA) was used as a cost function in order to consider dynamic lifting. However, it is known that the moment weighted JRA as a cost function predicted the lower extremity and L5/S1 joint motions better than the upper extremities, while the constant weighted JRA as a cost function predicted the latter better than the former. To compensate for this, we proposed a hybrid moment weighted JRA as a new cost function with moment weighted for only the lower extremity. In order to validate the proposed cost function, the predicted and real lifting postures for various lifting conditions were compared by using the root mean square(RMS) error. This hybrid JRA reduced RMS more than the previous cost functions. Therefore, it is concluded that the cost function of a hybrid moment weighted JRA can be used to predict three-dimensional lifting postures. To compare with the predicted trajectories and the real lifting movements, graphical validations were performed. The results also showed that the hybrid moment weighted cost function model was found to have generated the postures more similar to the real movements.

A Study on the Muscle Activity During Asymmetric Load Handling (허리의 비틀림 각도에 따른 근육 활동 분석)

  • 장성록;박현진
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.117-120
    • /
    • 2001
  • Low back pain has been known as the most frequent musuculoskeletal disorders in modern industrial society and cost by low back pain is increasing mon and more. The asymmetric lifting has been identified as a major risk factor of low back pain. In this study, the muscle activity and muscle exertion level during asymmetric load handling (without trunk flexion) was estimated. The results of normalized MVC measurement were decreased about 16%, 24%, 34% respectively as the asymmetric angle was $30^{\circ}$, $60^{\circ}$, $90^{\circ}$. From the results of EMG measurement contralateral muscles were more active than ipsilateral muscles. RMSEMG values of right erector spinae muscles were decreased as the work posture went to 90$^{\circ}$ and those of left erector spinae muscles were increased until the asymmetric angle was 40$^{\circ}$ but decreased continually over 40$^{\circ}$. And for seven of subjects, activities of left and right latissimus dorsi muscles were maintained constantly, while for remainer, those were irregular.

  • PDF

A Comparison of Pelvic, Spine Angle and Buttock Pressure in Various Cross-legged Sitting Postures (다양한 다리 꼬아 앉은 자세에 따른 골반과 척추 각도 및 볼기 압력 비교)

  • Kang, Sun-Young;Kim, Seung-Hyeon;Ahn, Soon-Jae;Kim, Young-Ho;Jeon, Hye-Seon
    • Physical Therapy Korea
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • The purpose of this study was to investigate the kinematic and kinetic changes that may occur in the pelvic and spine regions during cross-legged sitting postures. Experiments were performed on sixteen healthy subjects. Data were collected while the subject sat in 4 different sitting postures for 5 seconds: uncrossed sitting with both feet on the floor (Posture A), sitting while placing his right knee on the left knee (Posture B), sitting by placing right ankle on left knee (Posture C), and sitting by placing right ankle over the left ankle (Posture D). The order of the sitting posture was random. The sagittal plane angles (pelvic tilt, lumbar A-P curve, thoracic A-P curve) and the frontal plane angles (pelvic obliquity, lumber lateral curves, thoracic lateral curves) were obtained using VICON system with 6 cameras and analyzed with Nexus software. The pressure on each buttock was measured using Tekscan. Repeated one-way analysis of variance (ANOVA) was used to compare the angle and pressure across the four postures. The Bonferroni's post hoc test was used to determine the differences between upright trunk sitting and cross-legged postures. In sagittal plane, cross-legged sitting postures showed significantly greater kyphotic curves in lumbar and thoracic spine when compared uncrossed sitting posture. Also, pelvic posterior tilting was greater in cross-legged postures. In frontal plane, only height of the right pelvic was significantly higher in Posture B than in Posture A. Finally, in Posture B, the pressure on the right buttock area was greater than Posture A and, in Posture C, the pressure on the left buttock area was greater than Posture A. However, all dependent variables in both planes did not demonstrate any significant difference among the three cross-legged postures (p>.05). The findings suggest that asymmetric changes in the pelvic and spine region secondary to the prolonged cross-legged sitting postures may cause lower back pain and deformities in the spine structures.

Analysis of the Coordination of the Trunk Tilting Angle and Bilateral Lower Limbs According to the Stirrups Length during Trot in Equestrian: Asymmetric Index Development of Overall Movement Index Algorithm (승마 속보 시 등자 길이에 따른 체간기울기와 양측 하지의 협응성 비교분석 : 비대칭 지수 및 전체이동지수 알고리즘 개발)

  • Hyun, Seung-Hyun;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.131-140
    • /
    • 2015
  • Purpose : The purpose of this study was to analyze the coordination of the trunk tilting angle and bilateral lower limbs according to the stirrups length during trot in equestrian. Methods : Participants selected as subject were consisted of adult male(n=7, mean age: $45.00{\pm}3.78yrs$, mean height: $172.50{\pm}2.44cm$, mean body mass: $76.95{\pm}4.40kg$, mean, mean leg length: $97.30{\pm}2.60cm$). They were divided into 3-types of stirrups lengths(67 cm, 72 cm, 77 cm) during trot. The variables analyzed were consisted of the trunk front-rear angle, lower limb joint(Right Left hip, knee, ankle), overall movement index(OMI) of the lower limbs(thigh, shank, foot) and asymmetry index(AI%) during trot. Results : The average angle in hip and knee joint showed more extended posture according to the increase of stirrups lengths and ankle angle showed more plantarflexion posture according to increase of stirrups length during 1 stride in trot. Also, average angle showed more extended posture in right hip and ankle joint than that of left. The angle of knee joint didn't show significant difference statistically between right and left. Also asymmetric index in average angle of hip, knee and ankle joint didn't show significant difference statistically in between lower limbs, but hip joint showed higher asymmetric index in stirrup length of 77 cm and ankle joint showed higher asymmetric index in stirrup length of 67 cm than that of the others respectively. The FR angle in trunk of horse-rider showed relative backward leaning motions at stirrup length of 67 cm and 77 cm than that of stirrup length of 72 cm during stance and swing phase. OMI in thigh, shank, and foot limbs didn't show significant difference statistically according to the stirrups length of right and left lower limbs, but left lower limbs showed higher index than that of right lower limb. Stirrup length of 72 cm in shank and foot limbs showed higher index than that of stirrup length of 67 cm and 77 cm. But stirrup length of 72 cm showed higher asymmetric index than that of stirrups length of 67 cm and 77 cm. Conclusions : When considering the above, 72 cm(ratio of lower limb 74.04%) stirrup lengths could be useful in posture correction and stabilization than 67cm(ratio of lower limb 68.69%) and 77 cm(ratio of lower limb 79.18%) stirrup lengths during trot in horse back riding.