• Title/Summary/Keyword: Asymmetric Screw

Search Result 6, Processing Time 0.019 seconds

Evaluation of Clamping Characteristics for Subminiature Screws According to Thread Angle Variation (초소형 나사의 나사산 각도변화에 따른 체결특성 평가)

  • Min, Kyeong Bin;Kim, Jong Bong;Park, Keun;Ra, Seung Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.839-846
    • /
    • 2014
  • Recent trends in the miniaturization and weight reduction of portable electronic parts have driven the use of subminiature screws with a micrometer-scale pitch. As both screw length and pitch decrease in subminiature screws, the resulting clamping force becomes diminishes. In this work, Finite element (FE) analysis is performed to evaluate clamping force of a screw assembly, with a comparison with experimental result. To improve clamping force of subminiature screws, a new screw design is considered by modifying screw thread angle: the thread angle is varied as an asymmetric way unlike the conventional symmetric thread angle. FE analyses are then performed to compare the clamping characteristics of each subminiature screw with different thread angle. The effect of thread angles on the clamping force is then discussed in terms of structural safety for both positive and negative screws.

Investigation into Thread Rolling Characteristics of Subminiature Screws According to Thread Shapes (나사산 형상에 따른 초소형 나사 전조공정의 성형특성 고찰)

  • Lee, Ji Eun;Kim, Jong Bong;Park, Keun;Ra, Seung Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.971-978
    • /
    • 2016
  • Recent trends in miniaturization and lightness in portable electronics parts have driven developments in subminiature screws. This study aims to investigate the thread rolling process of a subminiature screw with an outer diameter and pitch of 1.0 and 0.25 mm, respectively. Finite element (FE) analyses were performed for the thread rolling process of symmetric and asymmetric screw threads. Through FE analyses, various process parameters, such as the horizontal and vertical die gap and the rolling stroke, were investigated in terms of the forming accuracy. The material flow characteristics in the thread rolling process of the symmetric and asymmetric screws were also discussed, and the relevant process parameters were determined accordingly. These simulation results were then reflected on real thread rolling processes, from which the symmetric and asymmetric screws could be formed successfully with allowable dimensional accuracy.

The Molecular and Crystal Structure of tricyclazole, $C_9H_7N_3S$ (Tricyclazole, $C_9H_7N_3S$ 의 분자 및 결정구조)

  • Keun Il Park;Young Kie Kim;Sung Il Cho;Man Hyung Yoo
    • Korean Journal of Crystallography
    • /
    • v.13 no.3_4
    • /
    • pp.152-157
    • /
    • 2002
  • The molecular and crystal structure of Tricyclazole, C/sub9/H/sub7/N₃S, has been determined by single crystal x-ray diffraction study. Crystallographic data for title compound: Pca2₁, a=14.889(1) Å, b=7.444(1) Å, c=15.189(2) Å, V=1683.3(3) ų, Z= 8. The molecular structure model was solved by direct methods and refined by full-matrix least-squares. The final reliable factor, R, is 0.047 for 1533 independent reflections (F/sub o//sup 2/)). The asymmetry unit contains two molecules which are in plate conformation, parallel to each other and related by a pseudo four-fold screw on the b-direction.

Experimental study on energy dissipation and damage of fabricated partially encased composite beams

  • Wu, Kai;Liu, Xiaoyi;Lin, Shiqi;Tan, Chengwei;Lu, Huiyu
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.311-321
    • /
    • 2022
  • The interfacial bond strength of partially encased composite (PEC) structure tends to 0, therefore, the cast-in-place concrete theoretically cannot embody better composite effect than the fabricated structure. A total of 12 specimens were designed and experimented to investigate the energy dissipation and damage of fabricated PEC beam through unidirectional cyclic loading test. Because the concrete on both sides of the web was relatively independent, some specimens showed obvious asymmetric concrete damage, which led to specimens bearing torsion effect at the later stage of loading. Based on the concept of the ideal elastoplastic model of uniaxial tensile steel and the principle of equivalent energy dissipation, the energy dissipation ductility coefficient is proposed, which can simultaneously reflect the deformability and bearing capacity. In view of the whole deformation of the beam, the calculation formula of energy dissipation is put forward, and the energy dissipation and its proportion of shear-bending region and pure bending region are calculated respectively. The energy dissipation efficiency of the pure bending region is significantly higher than that of the shear-bending region. The setting of the screw arbors is conducive to improving the energy dissipation capacity of the specimens. Under the condition of setting the screw arbors and meeting the reasonable shear span ratio, reducing the concrete pouring thickness can lighten the deadweight of the component and improve the comprehensive benefit, and will not have an adverse impact on the energy dissipation capacity of the beam. A damage model is proposed to quantify the damage changes of PEC beams under cyclic load, which can accurately reflect the load damage and deformation damage.

Crystal Structure of cis-(Malonato)[(4R,5R)-4,5-bis(Aminomethyl)-2-Isopropyl-1,3-Dioxolane]Platinum(II), A Potent Anticancer Agent

  • Cho, Sang-Woo;Yongkee Cho;Kim, Dai-Kee;Wanchul Shin
    • Korean Journal of Crystallography
    • /
    • v.11 no.1
    • /
    • pp.22-27
    • /
    • 2000
  • The structure of cis-(malonato)[(4R,5R)-4,5-bis(aminomethyl)-2-isopropyl-1,3-dioxolane]platinum(II) with a potent anticancer activity has been determined by the X-ray crystallographic method. Crystal data are as follows: Pt(C/sub 11/H/sub 20/N₂O/sub 6/), M/sub 4/=471.38, monoclinic, P2₁, a=7.112(1), b=33.615(3), c=7.135(1)Å, β=116.80(1)°, V=1522.6(3)Å, and Z=4. The two independent molecules with very similar structures are approximately related by pseudo two-fold screw axis symmetry, which makes the monolinic cell look like the orthorhombic cell with one molecule in the asymmetric unit and space group C222₁. The crystal packing mode is similar to that of the analogue with the dimethyl substituents instead of the isopropyl group. The Pt atom is coordinate to two O and two N atoms in a square planar structure. The six-membered chelate ring in the leaving ligand assumes a conformation intermediate between the half chair and the boat forms. The seven-membered ring in the carrier ligand assumes a twist-chair conformation and the oxolane ring assumes an envelope conformation. Crystal packing consists of the extensive hydrogen-bonding network in the two-dimensional molecular layers and weak van der Waals interactions between these layers.

  • PDF

Synthesis and Structural Characterization of Main Group 15 Organometallics R3M and R(Ph)2P(=N-Ar)(M = P, Sb, Bi; R = phenanthrenyl; Ar = 2,6-iPr2-C6H3)

  • Lee, Eun-Ji;Hong, Jin-Seok;Kim, Tae-Jeong;Kang, Young-Jin;Han, Eun-Me;Lee, Jae-Jung;Song, Ki-Hyung;Kim, Dong-Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1946-1952
    • /
    • 2005
  • New group 15 organometallic compounds, M$(phenanthrenyl)_3$ (M = P (1), Sb (2), Bi (3)) have been prepared from the reactions of 9-phenanthrenyllithium with $MCl_3$. A reaction of 9-(diphenylphosphino)phenanthrene with 2,6-diisopropylphenyl azide led to the formation of (phenanthrenyl)${(Ph)}_2P$=N-(2,6-$^iPr_2C_6H_3$) (4). The crystal structures of 2 and 4 have been determined by single-crystal X-ray diffractions, both of which crystallize with two independent molecules in the asymmetric unit. Compound 2 shows a trigonal pyramidal geometry around the Sb atom with three phenanthrenyl groups being located in a screw-like fashion with an approximately $C_3$ symmetry. A significant amount of CH- -$\pi$ interaction exists between two independent molecules of 4. The phosphorus center possesses a distorted tetrahedral environment with P-N bond lengths of 1.557(3)$\AA$ (P(1) N) and 1.532(3)$\AA$ (P(2)-N), respectively, which are short enough to support a double bond character. One of the most intriguing structural features of 4 is an unusually diminished bond angle of C-N-P, attributable to the hydrogen bonding of N(1)-H(5A) [ca. 2.49$\AA$ between two adjacent molecules in crystal packing. The compounds 1-3 show purple emission both in solution and as films at room temperature with emission maxima ($\lambda_{max}$) at 349, 366, and 386 nm, respectively, attributable to the ligand centered $\pi$ $\rightarrow$ $\pi^\ast$ transition in phenanthrene contributed by the lone pair electrons of the Gp 15 elements. Yet the nature of luminescence observed with 4 differs in that it originates from $\pi$ (diisopropylbenzene)-$\pi^\ast$ (phenanthrene) transitions with the $\rho\pi$contribution from the nitrogen atom. The emission maximum of 4 is red-shifted ranging 350-450 nm due to the internal charge transfer from the phenanthrenyl ring to the N-arylamine group as deduced from the ab initio calculations.