• Title/Summary/Keyword: Asset Pricing

Search Result 158, Processing Time 0.023 seconds

EFFICIENT AND ACCURATE FINITE DIFFERENCE METHOD FOR THE FOUR UNDERLYING ASSET ELS

  • Hwang, Hyeongseok;Choi, Yongho;Kwak, Soobin;Hwang, Youngjin;Kim, Sangkwon;Kim, Junseok
    • The Pure and Applied Mathematics
    • /
    • v.28 no.4
    • /
    • pp.329-341
    • /
    • 2021
  • In this study, we consider an efficient and accurate finite difference method for the four underlying asset equity-linked securities (ELS). The numerical method is based on the operator splitting method with non-uniform grids for the underlying assets. Even though the numerical scheme is implicit, we solve the system of discrete equations in explicit manner using the Thomas algorithm for the tri-diagonal matrix resulting from the system of discrete equations. Therefore, we can use a relatively large time step and the computation of the ELS option pricing is fast. We perform characteristic computational test. The numerical test confirm the usefulness of the proposed method for pricing the four underlying asset equity-linked securities.

The Factor Space in Financial Markets

  • Geanakoplos, John;Oh, Gyutaeg
    • Management Science and Financial Engineering
    • /
    • v.2 no.1
    • /
    • pp.73-101
    • /
    • 1996
  • We show assets can be classified into diversifiable risks and non-diversifiable risks based on aggregate endowment and spanning so that in equilibrium agents eliminate diversifiable risks which must have zero values. Consequently, the benchmark portfolio that represents a pricing operator should have only a non-diversifiable risk, aggregate endowment should earn a positive risk premium over a riskless asset, and, even in incomplete markets, there should be a pricing operator represented by a function of aggregate endowment if any asset mean-independent of aggregate endowment is diversifiable. These results apply to both the CAPM and a representative agent model.

  • PDF

A Study on Risks and Returns Using A Housing Capital Asset Pricing Model (CAPM): the Case of Three Gangnam Districts Apartment Market in Seoul (주택 자본자산가격결정모형(Capital Asset Pricing Model)을 활용한 위험과 수익 분석: 서울 강남 3개구 아파트시장의 경우)

  • Lee, Jong-Ah;Jeong, Jun-Ho
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.234-252
    • /
    • 2010
  • This paper examines the tendency of housing assets to become increasingly quasi-financial assets by analyzing the relationships between risks and returns in three Gangnam districts (Gangnam-gu, Seocho-gu and Songpa-gu) apartment markets in Seoul, especially for the apartments to be reconstructed, capitalizing upon some capital asset pricing models (CAPM). A single factor CAPM model shows positive relationships between risks and returns regardless of the types of apartments in three Gangnam districts. Multi-factors CAPM models also confirm that the market and SMB (small minus big) factors are positively related to the rate of returns regardless of the types of apartments. However, the unsystematic risk factor is found to be statistically positive especially for the apartments to be reconstructed, while the momentum factor is dependent upon the regression models used. An analysis on some portfolios classified by the size of apartments and price volatility and/or beta values suggests that there are the positive linear relationships between risks and returns and the SMB factor is clearly found to be significant in determining the rate of returns. In particular, housing assets are highly highlighted as investment goods and/or quasi financial assets for the apartments to be constructed in the Gangnam housing.

  • PDF

Asset Pricing From Log Stochastic Volatility Model: VKOSPI Index (로그SV 모형을 이용한 자산의 가치평가에 관한 연구: VKOSPI 지수)

  • Oh, Yu-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.1
    • /
    • pp.83-92
    • /
    • 2011
  • This paper examines empirically Durham's (2008) asset pricing models to the KOSPI200 index. This model Incorporates the VKOSPI index as a proxy for 1 month integrated volatility. This approach uses option prices to back out implied volatility states with an explicitly speci ed risk-neutral measure and risk premia estimated from the data. The application uses daily observations of the KOSPI200 and VKOSPI indices from January 2, 2003 to September 24, 2010. The empirical results show that non-affine model perform better than affine model.

Jensen's Alpha Estimation Models in Capital Asset Pricing Model

  • Phuoc, Le Tan
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.5 no.3
    • /
    • pp.19-29
    • /
    • 2018
  • This research examined the alternatives of Jensen's alpha (α) estimation models in the Capital Asset Pricing Model, discussed by Treynor (1961), Sharpe (1964), and Lintner (1965), using the robust maximum likelihood type m-estimator (MM estimator) and Bayes estimator with conjugate prior. According to finance literature and practices, alpha has often been estimated using ordinary least square (OLS) regression method and monthly return data set. A sample of 50 securities is randomly selected from the list of the S&P 500 index. Their daily and monthly returns were collected over a period of the last five years. This research showed that the robust MM estimator performed well better than the OLS and Bayes estimators in terms of efficiency. The Bayes estimator did not perform better than the OLS estimator as expected. Interestingly, we also found that daily return data set would give more accurate alpha estimation than monthly return data set in all three MM, OLS, and Bayes estimators. We also proposed an alternative market efficiency test with the hypothesis testing Ho: α = 0 and was able to prove the S&P 500 index is efficient, but not perfect. More important, those findings above are checked with and validated by Jackknife resampling results.

PRICING FLOATING-STRIKE LOOKBACK OPTIONS WITH FLEXIBLE MONITORING PERIODS

  • Lee, Hang-Suck
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.3
    • /
    • pp.485-495
    • /
    • 2008
  • A floating-strike lookback call option gives the holder the right to buy at the lowest price of the underlying asset. Similarly, a floating-strike lookback put option gives the holder the right to sell at the highest price. This paper will present explicit pricing formulas for these floating-strike lookback options with flexible monitoring periods. The monitoring periods of these options start at an arbitrary date and end at another arbitrary date before maturity. Sections 3 and 4 assume that the underlying assets pay no dividends. In contrast, Section 5 will derive explicit pricing formulas for these options when their underlying asset pays dividends continuously at a rate proportional to its price.

CLOSED-FORM SOLUTIONS OF AMERICAN PERPETUAL PUT OPTION UNDER A STRUCTURALLY CHANGING ASSET

  • Shin, Dong-Hoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.151-160
    • /
    • 2011
  • Typically, it is hard to find a closed form solution of option pricing formula under an asset governed by a change point process. In this paper we derive a closed-form solution of the valuation function for an American perpetual put option under an asset having a change point. Structural changes are formulated through a change-point process with a Markov chain. The modified smooth-fit technique is used to obtain the closed-form valuation function. We also guarantee the optimality of the solution via the proof of a corresponding verification theorem. Numerical examples are included to illustrate the results.

AN EFFICIENT METHOD FOR SOLVING TWO-ASSET TIME FRACTIONAL BLACK-SCHOLES OPTION PRICING MODEL

  • DELPASAND, R.;HOSSEINI, M.M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.121-137
    • /
    • 2022
  • In this paper, we investigate an efficient hybrid method for solving two-asset time fractional Black-Scholes partial differential equations. The proposed method is based on the Crank-Nicolson the radial basis functions methods. We show that, this method is convergent and we obtain good approximations for solution of our problems. The numerical results show high accuracy of the proposed method without needing high computational cost.

MULTI-TYPE FINANCIAL ASSET MODELS FOR PORTFOLIO CONSTRUCTION

  • Oh, Jae-Pill
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.211-224
    • /
    • 2010
  • We define some asset models which are useful for portfolio construction in various terms of time. Our asset models are geometric jump-diffusions defined by the solutions of stochastic differential equations which are decomposed by various terms of time basically. We also can study pricing and hedging strategy of options in our models roughly.

The Stochastic Volatility Option Pricing Model: Evidence from a Highly Volatile Market

  • WATTANATORN, Woraphon;SOMBULTAWEE, Kedwadee
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.685-695
    • /
    • 2021
  • This study explores the impact of stochastic volatility in option pricing. To be more specific, we compare the option pricing performance between stochastic volatility option pricing model, namely, Heston option pricing model and standard Black-Scholes option pricing. Our finding, based on the market price of SET50 index option between May 2011 and September 2020, demonstrates stochastic volatility of underlying asset return for all level of moneyness. We find that both deep in the money and deep out of the money option exhibit higher volatility comparing with out of the money, at the money, and in the money option. Hence, our finding confirms the existence of volatility smile in Thai option markets. Further, based on calibration technique, the Heston option pricing model generates smaller pricing error for all level of moneyness and time to expiration than standard Black-Scholes option pricing model, though both Heston and Black-Scholes generate large pricing error for deep-in-the-money option and option that is far from expiration. Moreover, Heston option pricing model demonstrates a better pricing accuracy for call option than put option for all level and time to expiration. In sum, our finding supports the outperformance of the Heston option pricing model over standard Black-Scholes option pricing model.