• 제목/요약/키워드: Assessment Framework

검색결과 974건 처리시간 0.023초

수학적 과정 평가를 위한 서술형 문항 및 채점기준 개발 연구 (Developing Essay Type Questions and Rubrics for Assessment of Mathematical Processes)

  • 도종훈;박윤범;박혜숙
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제28권4호
    • /
    • pp.553-571
    • /
    • 2014
  • 근래 수학의 학습에서 수학의 내용뿐만 아니라 수학적 과정을 평가할 수 있는 문항의 중요성에 대한 인식이 확산되고 있다. 본 연구에서는 수학의 내용과 더불어 수학적 과정 즉, 수학적 의사소통, 추론, 문제해결을 명시적인 평가요소로 포함하는 서술형 문항으로서 '수학적 과정 문항'이라는 개념을 제안하고, 수학적 과정 문항의 제작을 위한 예시 평가기준과 문항 및 채점기준 개발을 통해 서술형 문항을 활용한 수학적 과정 평가 방안을 논의한다.

건축물 생애과정에서의 이산화탄소 배출량 계산 프로세스에 관한 연구 (A Study on the Calculation Process of Carbon Dioxide Emission for Buildings with Life Cycle Assessment)

  • 정영선;허정호
    • 한국태양에너지학회 논문집
    • /
    • 제31권1호
    • /
    • pp.23-30
    • /
    • 2011
  • International cooperation to reduce greenhouse gas emissions is expected to provide a big crisis and a great opportunity at the same time for our industry that heavily consumes energy. To cope actively with the international environmental regulation, such as the Framework Convention on Climate Change, quantitative measurement of the volume of greenhouse gases emitted by various industries and quantitative prediction of the greenhouse gas emissions of the future are becoming more important than anything else at the national level. This study aims to propose the calculation process of carbon dioxide($CO_2$) emission for building in life cycle. This paper describes and compares 9 different tool for environmental load estimation with LCA. This study proposed the calculation process for quantitatively predicting and assessing $CO_2$ emissions during the life cycle of buildings based on the life cycle assessment(LCA). The life cycle steps of buildings were divided into the design/supervision, new construction, repair, renovation, use of operating energy in buildings, maintenance, and reconstruction stage in the life cycle inventory analysis and the method of assessing the environmental load in each stage was proposed.

SPI 신뢰성 확보를 위한 SPICE 기반 6시그마 적용 사례 연구 (A case study of 6sigma application for the reliability in SPI based on SPICE)

  • 김종기;서장훈;박명규
    • 대한안전경영과학회지
    • /
    • 제7권4호
    • /
    • pp.141-163
    • /
    • 2005
  • The international SPICE (Software Process Improvement and Capability determination) Project ISO/IEC 15504(SPICE : Software Process Improvement and Capability determination) is an emerging International Standard on SPA(Software Process Assessment). A prime motivation for developing this standard has been the perceived need for an internationally recognized software process assessment framework that pulls together the existing public and proprietary models and methods. A SPICE assessment can be considered as one of representative SPA model since assessors assign ratings to indicators and metrics to measure the capability of software process. But this models doesn't provide a systematic measurement procedures and dynamic method for SPI(Software Process Improvement). Through the evaluation of SPICE is capable of providing a substantiated basis for using the notion of capability, as well as providing information for nacessary improvements to the standard using 6sigma process. As a result, this paper propose a measurement procedure and guidelines for application of 6sigma process to guarantee the reliability in SPI and suggest the structure to support SPI on overall organization.

GIS기반의 터널 시공에 따른 위험도 평가 시스템 개발 및 적용 (Development and Implementation of A GIS-based Tunnelling Risk Management System)

  • 유충식;전영우;김재훈;박영진;유정훈
    • 한국지반공학회논문집
    • /
    • 제20권1호
    • /
    • pp.49-59
    • /
    • 2004
  • 본 논문에서는 도심지에서의 터널 시공에 따른 지반거동을 평가하고 이에 따른 인접 건물 혹은 매설관의 위험도를 평가하는 GIS기반의 위험도 관리 시스템(GIS-TURIMS) 개발에 대한 내용을 다루었다. 본 시스템은 상용 GIS 소프트웨어인 ArcView 8.1을 기반으로 개발되었고, VB(Visual Basic)와 VBA(Visual Basic Application)를 사용하여 터널시공으로 인한 지반거동과 건물 손상정도의 공학적 연산을 수행할 수 있도록 하였다. 개발된 시스템은 GIS기술의 장점을 최대한 활용하여 터널 시공으로 인한 지반거동, 건물/매설관 손상평가의 강력한 해석을 수행할 수 있도록 하였다. 본 논문에서는 GIS-TURIMS의 개요와 개발과정에 대하여 상세히 다루었다.

A Pesticide Residue Risk Assessment from Agricultural Land Using GIS

  • Lee, Ju-Young;Krishina, Ganeshy;Han, Moo-Young;Yang, Jung-Seok;Choi, Jae-Young
    • Environmental Engineering Research
    • /
    • 제13권3호
    • /
    • pp.107-111
    • /
    • 2008
  • Water quality contamination issues are of critical concern to human health, whilst pesticide release generated from irrigated land should be considered for protecting natural habitats and human health. This paper suggests new method for evaluation and analysis using the GIS technique based on integrated spatial modeling framework. The pesticide use on irrigated land is a subset of the larger spectrum of industrial chemicals used in modern society. The behavior of a pesticide is affected by the natural affinity of the chemical for one of four environmental compartments; solid matter, liquid, gaseous form, and biota. However, the major movements are a physical transport over the ground surface by rainfall-runoff and irrigation-runoff. The irrigated water carries out with the transporting sediments and makes contaminated water by pesticide. This paper focuses on risk impact identification and assessment using GIS technique. Also, generated data on pesticide residues on farmland and surface water through GIS simulation will be reflected to environmental research programs. Finally, this study indicates that GIS application is a beneficial tool for spatial pesticide impact analysis as well as environmental risk assessment.

FUKUSHIMA DAI-ICHI ACCIDENT: LESSONS LEARNED AND FUTURE ACTIONS FROM THE RISK PERSPECTIVES

  • Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.27-38
    • /
    • 2014
  • The Fukushima Dai-Ichi accident in 2011 has affected various aspects of the nuclear society worldwide. The accident revealed some problems in the conventional approaches used to ensure the safety of nuclear installations. To prevent such disastrous accidents in the future, we have to learn from them and improve the conventional approaches in a more systematic manner. In this paper, we will cover three issues. The first is to identify the key issues that affected the progress of the Fukushima Dai-Ichi accident greatly. We examine the accident from a defense-in-depth point of view to identify such issues. The second is to develop a more systematic approach to enhance the safety of nuclear installations. We reexamine nuclear safety from a risk point of view. We use the concepts of residual and unknown risks in classifying the risk space. All possible accident scenarios types are reviewed to clarify the characteristics of the identified issues. An approach is proposed to improve our conventional approaches used to ensure nuclear safety including the design of safety features and the safety assessments from a risk point of view. Finally, we address some issues to be improved in the conventional risk assessment and management framework and/or practices to enhance nuclear safety.

Assessment of Dynamic Open-source Cross-site Scripting Filters for Web Application

  • Talib, Nurul Atiqah Abu;Doh, Kyung-Goo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3750-3770
    • /
    • 2021
  • This study investigates open-source dynamic XSS filters used as security devices in web applications to account for the effectiveness of filters in protecting against XSS attacks. The experiment involves twelve representative filters, which are examined individually by placing them into the final output function of a custom-built single-input-form web application. To assess the effectiveness of the filters in their tasks of sanitizing XSS payloads and in preserving benign payloads, a black-box testing method is applied using an automated XSS testing framework. The result in working with malicious and benign payloads shows an important trade-off in the filters' tasks. Because the filters that only check for dangerous or safe elements, they seem to neglect to validate their values. As some safe values are mistreated as dangerous elements, their benign payload function is lost in the way. For the filters to be more effective, it is suggested that they should be able to validate the respective values of malicious and benign payloads; thus, minimizing the trade-off. This particular assessment of XSS filters provides important insight regarding the filters that can be used to mitigate threats, including the possible configurations to improve them in handling both malicious and benign payloads.

A dynamic reliability approach to seismic vulnerability analysis of earth dams

  • Hu, Hongqiang;Huang, Yu
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.661-668
    • /
    • 2019
  • Seismic vulnerability assessment is a useful tool for rational safety analysis and planning of large and complex structural systems; it can deal with the effects of uncertainties on the performance of significant structural systems. In this study, an efficient dynamic reliability approach, probability density evolution methodology (PDEM), is proposed for seismic vulnerability analysis of earth dams. The PDEM provides the failure probability of different limit states for various levels of ground motion intensity as well as the mean value, standard deviation and probability density function of the performance metric of the earth dam. Combining the seismic reliability with three different performance levels related to the displacement of the earth dam, the seismic fragility curves are constructed without them being limited to a specific functional form. Furthermore, considering the seismic fragility analysis is a significant procedure in the seismic probabilistic risk assessment of structures, the seismic vulnerability results obtained by the dynamic reliability approach are combined with the results of probabilistic seismic hazard and seismic loss analysis to present and address the PDEM-based seismic probabilistic risk assessment framework by a simulated case study of an earth dam.

Probabilistic safety assessment-based importance analysis of cyber-attacks on nuclear power plants

  • Park, Jong Woo;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.138-145
    • /
    • 2019
  • With the application of digital technology to safety-critical infrastructures, cyber-attacks have emerged as one of the new dangerous threats. In safety-critical infrastructures such as a nuclear power plant (NPP), a cyber-attack could have serious consequences by initiating dangerous events or rendering important safety systems unavailable. Since a cyber-attack is conducted intentionally, numerous possible cases should be considered for developing a cyber security system, such as the attack paths, methods, and potential target systems. Therefore, prior to developing a risk-informed cyber security strategy, the importance of cyber-attacks and significant critical digital assets (CDAs) should be analyzed. In this work, an importance analysis method for cyber-attacks on an NPP was proposed using the probabilistic safety assessment (PSA) method. To develop an importance analysis framework for cyber-attacks, possible cyber-attacks were identified with failure modes, and a PSA model for cyber-attacks was developed. For case studies, the quantitative evaluations of cyber-attack scenarios were performed using the proposed method. By using quantitative importance of cyber-attacks and identifying significant CDAs that must be defended against cyber-attacks, it is possible to develop an efficient and reliable defense strategy against cyber-attacks on NPPs.

Seismic Fragility of Steel Piping System Based on Pipe Size, Coupling Type, and Wall Thickness

  • Ju, Bu Seog;Gupta, Abhinav;Ryu, Yonghee
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1200-1209
    • /
    • 2018
  • In this study, a probabilistic framework of the damage assessment of pipelines subjected to extreme hazard scenario was developed to mitigate the risk and enhance design reliability. Nonlinear 3D finite element models of T-joint systems were developed based on experimental tests with respect to leakage detection of black iron piping systems, and a damage assessment analysis of the vulnerability of their components according to nominal pipe size, coupling type, and wall thickness under seismic wave propagations was performed. The analysis results showed the 2-inch schedule 40 threaded T-joint system to be more fragile than the others with respect to the nominal pipe sizes. As for the coupling types, the data indicated that the probability of failure of the threaded T-joint coupling was significantly higher than that of the grooved type. Finally, the seismic capacity of the schedule 40 wall thickness was weaker than that of schedule 10 in the 4-inch grooved coupling, due to the difference in the prohibition of energy dissipation. Therefore, this assessment can contribute to the damage detection and financial losses due to failure of the joint piping system in a liquid pipeline, prior to the decision-making.