• Title/Summary/Keyword: Assessment Frames

Search Result 162, Processing Time 0.023 seconds

Annual Loss Probability Estimation of Steel Moment-Resisting Frames(SMRFs) using Seismic Fragility Analysis (지진취약도를 통한 철골모멘트골조의 연간 손실 평가)

  • Jun, Saemee;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.517-524
    • /
    • 2014
  • The ultimate goal of seismic design is to reduce the probable losses or damages occurred during an expected earthquake event. To achieve this goal, this study represents a procedure that can estimate annual loss probability of a structure damaged by strong ground motion. First of all, probabilistic seismic performance assessment should be performed using seismic fragility analyses that are presented by a cumulative distribution function of the probability in each exceedance structural damage state. A seismic hazard curve is then derived from an annual frequency of exccedance per each ground motion intensity. An annual loss probability function is combined with seismic fragility analysis results and seismic hazard curves. In this paper, annual loss probabilities are estimated by the structural fragility curve of steel moment-resisting frames(SMRFs) in San Francisco Bay, USA, and are compared with loss estimation results obtained from the HAZUS methodology. It is investigated from the comparison that seismic losses of the SMRFs calculated from the HAZUS method are conservatively estimated. The procedure presented in this study could be effectively used for future studies related with structural seismic performance assessment and annual loss probability estimation.

Biases in the Assessment of Left Ventricular Function by Compressed Sensing Cardiovascular Cine MRI

  • Yoon, Jong-Hyun;Kim, Pan-ki;Yang, Young-Joong;Park, Jinho;Choi, Byoung Wook;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.2
    • /
    • pp.114-124
    • /
    • 2019
  • Purpose: We investigate biases in the assessments of left ventricular function (LVF), by compressed sensing (CS)-cine magnetic resonance imaging (MRI). Materials and Methods: Cardiovascular cine images with short axis view, were obtained for 8 volunteers without CS. LVFs were assessed with subsampled data, with compression factors (CF) of 2, 3, 4, and 8. A semi-automatic segmentation program was used, for the assessment. The assessments by 3 CS methods (ITSC, FOCUSS, and view sharing (VS)), were compared to those without CS. Bland-Altman analysis and paired t-test were used, for comparison. In addition, real-time CS-cine imaging was also performed, with CF of 2, 3, 4, and 8 for the same volunteers. Assessments of LVF were similarly made, for CS data. A fixed compensation technique is suggested, to reduce the bias. Results: The assessment of LVF by CS-cine, includes bias and random noise. Bias appeared much larger than random noise. Median of end-diastolic volume (EDV) with CS-cine (ITSC or FOCUSS) appeared -1.4% to -7.1% smaller, compared to that of standard cine, depending on CF from (2 to 8). End-systolic volume (ESV) appeared +1.6% to +14.3% larger, stroke volume (SV), -2.4% to -16.4% smaller, and ejection fraction (EF), -1.1% to -9.2% smaller, with P < 0.05. Bias was reduced from -5.6% to -1.8% for EF, by compensation applied to real-time CS-cine (CF = 8). Conclusion: Loss of temporal resolution by adopting missing data from nearby cardiac frames, causes an underestimation for EDV, and an overestimation for ESV, resulting in underestimations for SV and EF. The bias is not random. Thus it should be removed or reduced for better diagnosis. A fixed compensation is suggested, to reduce bias in the assessment of LVF.

Seismic behavior of K-type eccentrically braced frames with high strength steel based on PBSD method

  • Li, Shen;Wang, Chao-yu;Li, Xiao-lei;Jian, Zheng;Tian, Jian-bo
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.667-685
    • /
    • 2018
  • In eccentrically braced steel frames (EBFs), the links are fuse members which enter inelastic phase before other structure members and dissipate the seismic energy. Based on the force-based seismic design method, damages and plastic deformations are limited to the links, and the main structure members are required tremendous sizes to ensure elastic with limited or no damage. Force-based seismic design method is very common and is found in most design codes, it is unable to determine the inelastic response of the structure and the damages of the members. Nowadays, methods of seismic design are emphasizing more on performance-based seismic design concept to have a more realistic assessment of the inelastic response of the structure. Links use ordinary steel Q345 (the nominal yielding strength $f_y{\geq}345MPa$) while other members use high strength steel (Q460 $f_y{\geq}460MPa$ or Q690 $f_y{\geq}690MPa$) in eccentrically braced frames with high strength steel combination (HSS-EBFs). The application of high strength steels brings out many advantages, including higher safety ensured by higher strength in elastic state, better economy which results from the smaller member size and structural weight as well as the corresponding welding work, and most importantly, the application of high strength steel in seismic fortification zone, which is helpful to popularize the extensive use of high strength steel. In order to comparison seismic behavior between HSS-EBFs and ordinary EBFs, on the basis of experimental study, four structures with 5, 10, 15 and 20 stories were designed by PBSD method for HSS-EBFs and ordinary EBFs. Nonlinear static and dynamic analysis is applied to all designs. The loading capacity, lateral stiffness, ductility and story drifts and failure mode under rare earthquake of the designs are compared. Analyses results indicated that HSS-EBFs have similar loading capacity with ordinary EBFs while the lateral stiffness and ductility of HSS-EBFs is lower than that of EBFs. HSS-EBFs and ordinary EBFs designed by PBSD method have the similar failure mode and story drift distribution under rare earthquake, the steel weight of HSS-EBFs is 10%-15% lower than ordinary EBFs resulting in good economic efficiency.

An Efficient QoE-Aware Transport Stream Assessment Schemes for Realtime Mobile IPTV's Distorting Contents Evaluation (실시간 모바일 IPTV의 열화 컨텐츠 평가를 위한 효율적 QoE 인지형 전송 스트림 측정 스키마)

  • Kim, Jin-Sul;Yoon, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2B
    • /
    • pp.352-360
    • /
    • 2010
  • Supporting user perceptual QoE-guaranteed IP-based multimedia service such as IPTV and Mobile IPTV, we represent an efficient QoE-aware transport stream assessment schemes to apply realtime mobile IPTV's contents distorted by various network errors such as bandwidth, delay, jitter, and packet loss. This paper proposes in detail an efficient matching and QoE-aware measurement methods. The brightness of the digitized contents per each frames of transport streams is used and applied to reduced-reference method. The hybrid video quality metric is designed by QoE-indicators such as blur, block, edge busyness, and color error. We compare original with processed source to evaluate them in a high precision degree of accuracy.

Global seismic damage assessment of high-rise hybrid structures

  • Lu, Xilin;Huang, Zhihua;Zhou, Ying
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.311-325
    • /
    • 2011
  • Nowadays, many engineers believe that hybrid structures with reinforced concrete central core walls and perimeter steel frames offer an economical method to develop the strength and stiffness required for seismic design. As a result, a variety of such structures have recently been applied in actual construction. However, the performance-based seismic design of such structures has not been investigated systematically. In the performance-based seismic design, quantifying the seismic damage of complete structures by damage indices is one of the fundamental issues. Four damage states and the final softening index at each state for high-rise hybrid structures are suggested firstly in this paper. Based on nonlinear dynamic analysis, the relation of the maximum inter-story drift, the main structural characteristics, and the final softening index is obtained. At the same time, the relation between the maximum inter-story drift and the maximum roof displacement over the height is also acquired. A double-variable index accounting for maximum deformation and cumulative energy is put forward based on the pushover analysis. Finally, a case study is conducted on a high-rise hybrid structure model tested on shaking table before to verify the suggested quantities of damage indices.

Accelerated Life Test Design of an Electromagnetic Shielding Door Hinge (전자파 차폐도어용 힌지의 가속 수명 시험법 설계)

  • Kim, Do Sik;Cheong, Han Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.887-895
    • /
    • 2017
  • This paper presents a study on the accelerated life tests of parts that operate during the opening and closing of door frames, particularly door hinges. Hinge theoretical verification and validation of the test equipment in the present study and the different structures and fault mode, depending on the purpose of usage analysis, failure mode for one of the hinges of the switchgear components used for electromagnetic shielding facilities and on-site operating conditions. The accelerated life test was designed for the characteristic lifetime prediction of the components, by estimating the shape parameter and the acceleration factor.

Seismic resilience evaluation of RC-MRFs equipped with passive damping devices

  • Kamaludin, Puteri Nihal Che;Kassem, Moustafa Moufid;Farsangi, Ehsan Noroozinejad;Nazri, Fadzli Mohamed;Yamaguchi, Eiki
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.391-405
    • /
    • 2020
  • The use of passive energy dissipation devices has been widely used in the construction industry to minimize the probability of damage occurred under intense ground motion. In this study, collapse margin ratio (CMR) and fragility curves are the main parameters in the assessment to characterize the collapse safety of the structures. The assessment is done on three types of RC frame structures, incorporating three types of dampers, viscoelastic, friction, and BRB dampers. The Incremental dynamic analyses (IDA) were performed by simulating an array of 20 strong ground motion (SGM) records considering both far-field and near-field seismic scenarios that were followed by fragility curves. With respect to far-field ground motion records, the CMR values of the selected frames indicate to be higher and reachable to safety margin more than those under near-field ground motion records that introduce a high devastating impact on the structures compared to far-field excitations. This implies that the near field impact affects the ground movements at the site by attenuation the direction and causing high-frequency filtration. Besides that, the results show that the viscoelastic damper gives better performance for the structures in terms of reducing the damages compared to the other energy dissipation devices during earthquakes.

A Study of Streetscape Evaluation Methods Using Computer Animation -A Comparison of Static and Dynamic Simulation Methods- (컴퓨터 애니메이션을 이용한 가로경관의 평가기법 연구 -정적 및 동적 시뮬레이션 기법의 비교-)

  • 김충식;이인성
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.4
    • /
    • pp.1-13
    • /
    • 1999
  • Previous research for visual assessment of streetscape employed static simulation methods to represent future landscape. However, streetscape is experienced sequentially, and thus dynamic simulations can be more effective. This study tried to adopt computer animation in the evaluation of streetscape, and examined its effects and possibilities. Three development scenarios for the redevelopment districts of Sokong-Ro and Banpo-Ro in Seoul were designed, and simulations were produced by three methods-photo-retouching, computer still image, and animation. A preference questionnaire was asked to 69 university students, and the effects of simulation methods on visual preference were examined. In addition, the frames of the animation were reclassed to identify the visibility of physical elements. The relationships between the visibility and visual preference were analyzed. The results showed that visual preference can be explained by three factors-Amenity, Tidiness, and Variousness-that account for 62.4% of the total variance, and the Amenity showed the highest proportion: 36.0%. Among the three simulation methods, animation showed the largest difference in preference for the most important factor(Amenity), and yielded the highest correlation between visibility of physical elements and Amenity. This result demonstrated that dynamic simulations can provide more accurate observation of visual changes, especially because the simulated landscape is experienced sequentially. The results also revealed that the sequential change in the visibility of physical elements can be examined easily and precisely by animation. This benefit of animation enables analysts to identify the points where the landscape varies the most, and thus visual preference should be evaluated.

  • PDF

Seismic fragility assessment of self-centering RC frame structures considering maximum and residual deformations

  • Li, Lu-Xi;Li, Hong-Nan;Li, Chao
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.677-689
    • /
    • 2018
  • Residual deformation is a crucial index that should be paid special attention in the performance-based seismic analyses of reinforced concrete (RC) structures. Owing to their superior re-centering capacity under earthquake excitations, the post-tensioned self-centering (PTSC) RC frames have been proposed and developed for engineering application during the past few decades. This paper presents a comprehensive assessment on the seismic fragility of a PTSC frame by simultaneously considering maximum and residual deformations. Bivariate limit states are defined according to the pushover analyses for maximum deformations and empirical judgments for residual deformations. Incremental Dynamic Analyses (IDA) are conducted to derive the probability of exceeding predefined limit states at specific ground motion intensities. Seismic performance of the PTSC frame is compared with that of a conventional monolithic RC frame. The results show that, taking a synthetical consideration of maximum and residual deformations, the PTSC frame surpasses the monolithic frame in resisting most damage states, but is more vulnerable to ground motions with large intensities.

Draft List and Relative Importance of Principal Processes in the Geosphere to be Considered for the Radiological Safety Assessment of the Domestic Geological Disposal Facility through Analyzing FEPs for KBS-3 Type Disposal Repository of High-level Radioactive Waste(HLW) (KBS-3 방식 고준위방폐물 심층처분장 FEP 분석을 통한 국내 사용후핵연료 심층처분시설 방사선학적 안전성 평가용 지권영역 주요 프로세스 항목 및 상대적 중요도 도출)

  • Sukhoon Kim;Donghyun Lee;Dong-Keuk Park
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.33-44
    • /
    • 2023
  • The deep geological repository of high-level radioactive waste shall be designed to meet the safety objective set in the form of radiation dose or corresponding risk to protect human and the environment from radiation exposure. Engineering feasibility and conformity with the safety objective of the facility conceptual design can be demonstrated by comparing the assessment result using the computational model for scenario(s) describing the radionuclide release and transport from repository to biosphere system. In this study, as the preliminary study for developing the high-level radioactive waste disposal facility in Korea, we reviewed and analyzed the entire list of FEPs and how to handle each FEP from a general point of view, which are selected for the geosphere region in the radiological safety assessment performed for the license application of the KBS-3 type deep geological repository in Finland and Sweden. In Finland, five FEPs (i.e., stress redistribution, creep, stress redistribution, erosion and sedimentation in fractures, methane hydrate formation, and salt exclusion) were excluded or ignored in the radionuclide release and transport assessment. And, in Sweden, six FEPs (i.e., creep, surface weathering and erosion, erosion/sedimentation in fractures, methane hydrate formation, radiation effects (rock and grout), and earth current) were not considered for all time frames and earthquake out of a total of 25 FEPs for the geosphere. Based on these results, an FEP list (draft) for the geosphere was derived, and the relative importance of each item was evaluated for conducting the radiological safety assessment of the domestic deep geological disposal facility. Since most of information on the disposal facility in Korea has not been determined as of now, it is judged that all FEP items presented in Table 3 should be considered for the radiological safety assessment, and the relative importance derived from this study can be used in determining whether to apply each item in the future.