• 제목/요약/키워드: Assembly task

검색결과 159건 처리시간 0.024초

A Method of Robust Stabilization of the Plants Using DNP (DNP을 이용한 플랜트의 강인 안정화 기법)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제9권6호
    • /
    • pp.1574-1580
    • /
    • 2008
  • In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed In order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. Also, the learning architecture to compute inverse kinematic coordinates transformations in the Plants of auto-equipment systems is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

Influence of Time to Walk Back and Comparing for the Self-balancing Production Line

  • Hirotani, Daisuke;Myreshka, Myreshka;Morikawa, Katsumi;Takahashi, Katsuhiko
    • Industrial Engineering and Management Systems
    • /
    • 제4권1호
    • /
    • pp.36-46
    • /
    • 2005
  • In traditional production lines, such as assembly lines, each worker is usually assigned to a fixed task, which is beneficial since it reduces the amount of training needed for workers to master their assigned tasks. However, when workers complete their tasks at different speeds, the slowest worker will determine the overall pace of the production line and limit production. To avoid this problem, the self-balancing production line was introduced. In this type of production line, each worker works dynamically, thus they can maintain balanced production. Previous research analyzing the performance of these lines has ignored the walk-back time associated with dynamic workers. U-shaped production lines have also been analyzed and policies for such lines have been proposed. However, the walk-back time cannot be ignored in practice, and research taking this factor into account is needed to enable balanced production and thus the maximum production rate. In this paper, we propose production policies for a production line with the walk-back time taken into account, and define and analyze the conditions for self-balancing. Furthermore, we have compared the performance of such a line with that of other production lines under the same conditions, and the results show the superiority of this line in certain cases.

Analysis Framework using Process Mining for Block Movement Process in Shipyards (조선 산업에서 프로세스 마이닝을 이용한 블록 이동 프로세스 분석 프레임워크 개발)

  • Lee, Dongha;Bae, Hyerim
    • Journal of Korean Institute of Industrial Engineers
    • /
    • 제39권6호
    • /
    • pp.577-586
    • /
    • 2013
  • In a shipyard, it is hard to predict block movement due to the uncertainty caused during the long period of shipbuilding operations. For this reason, block movement is rarely scheduled, while main operations such as assembly, outfitting and painting are scheduled properly. Nonetheless, the high operating costs of block movement compel task managers to attempt its management. To resolve this dilemma, this paper proposes a new block movement analysis framework consisting of the following operations: understanding the entire process, log clustering to obtain manageable processes, discovering the process model and detecting exceptional processes. The proposed framework applies fuzzy mining and trace clustering among the process mining technologies to find main process and define process models easily. We also propose additional methodologies including adjustment of the semantic expression level for process instances to obtain an interpretable process model, definition of each cluster's process model, detection of exceptional processes, and others. The effectiveness of the proposed framework was verified in a case study using real-world event logs generated from the Block Process Monitoring System (BPMS).

An Effect Analysis of Layout Concepts on the Performances in Manufacturing Lines for Automotive Engine (자동차 엔진 생산라인 배치개념이 효율에 미치는 영향분석)

  • Xu, Te;Moon, Dug-Hee;Shin, Yang-Woo;Jung, Jong-Yun
    • Journal of the Korea Society for Simulation
    • /
    • 제19권2호
    • /
    • pp.107-118
    • /
    • 2010
  • Automotive manufacturing is a complex task that requires the production and assembly of thousands of different components or parts. The engine and the transmission are the major components that constitute a power train system. Although manufacturing processes of an engine are similar, the layouts of the manufacturing lines are different from factory to factory. It is due to the different design concept that how to combine the serial and parallel structures. In this paper, three engine lines of different factories are introduced, and the simulation technology is used to make the performance analysis for different design concepts.

Towards Instant Availability and Full Life Cycle Resilience in Vertical Cities: Automated Deployment and Transformation of High-Rise Buildings to Mitigate Social Challenges

  • Thomas Bock;Rongbo Hu
    • International Journal of High-Rise Buildings
    • /
    • 제11권2호
    • /
    • pp.75-86
    • /
    • 2022
  • High-rise buildings often can accommodate the population of small horizontal cities. The investment in high-rise buildings is considerable and therefore a rapid return on investment is necessary. The immediate availability of high-rise buildings can be achieved by automated prefabrication of highly finished modules and their instant on-site assembly by robotic and automated construction sites. A high-rise building as a vertical city can be considered as a sophisticated organism that can constantly change throughout its lifecycle in response to economic growth, demographic change, and environmental pressures. To date, many new urban high-rise developments claim to be "vertical cities", yet few represent this important characteristic. This article analyzed the technological readiness and innovations in the field of construction automation and robotics including single-task construction robots, automated on-site construction factories, and ambient assisted living. These technological advances enable the realization of future vertical cities that are able to continuously grow and transform in terms of form and function. Finally, the article proposes a visionary archetype of vertical city in the name of "dynamic vertical urbanism" that is easy to expand vertically and horizontally in order to achieve instant availability and full life cycle resilience thanks to advanced building technologies.

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • 제33권3호
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

Development of a Remote Multi-Task Debugger for Qplus-T RTOS (Qplus-T RTOS를 위한 원격 멀티 태스크 디버거의 개발)

  • 이광용;김흥남
    • Journal of KIISE:Computing Practices and Letters
    • /
    • 제9권4호
    • /
    • pp.393-409
    • /
    • 2003
  • In this paper, we present a multi-task debugging environment for Qplus-T embedded-system such as internet information appliances. We will propose the structure and functions of a remote multi-task debugging environment supporting environment effective ross-development. And, we are going enhance the communication architecture between the host and target system to provide more efficient cross-development environment. The remote development toolset called Q+Esto consists to several independent support tools: an interactive shell, a remote debugger, a resource monitor, a target manager and a debug agent. Excepting a debug agent, all these support tools reside on the host systems. Using the remote multi-task debugger on the host, the developer can spawn and debug tasks on the target run-time system. It can also be attached to already-running tasks spawned from the application or from interactive shell. Application code can be viewed as C/C++ source, or as assembly-level code. It incorporates a variety of display windows for source, registers, local/global variables, stack frame, memory, event traces and so on. The target manager implements common functions that are shared by Q+Esto tools, e.g., the host-target communication, object file loading, and management of target-resident host tool´s memory pool and target system´s symbol-table, and so on. These functions are called OPEn C APIs and they greatly improve the extensibility of the Q+Esto Toolset. The Q+Esto target manager is responsible for communicating between host and target system. Also, there exist a counterpart on the target system communicating with the host target manager, which is called debug agent. Debug agent is a daemon task on real-time operating systems in the target system. It gets debugging requests from the host tools including debugger via target manager, interprets the requests, executes them and sends the results to the host.

Assessment of Vibration Produced by Pneumatic Hand Tools Used in Automobile Assembly (자동차 조립공정에서 공기압력식 진동공구의 국소진동평가)

  • Kim, Sun Sul;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • 제6권1호
    • /
    • pp.1-16
    • /
    • 1996
  • This study was conducted at an automobile assembly line located in Kyonggi-do, Korea from January 16 to February 28, 1995. The purposes of this study were to assess worker exposures to hand-arm vibration and the performance of gloves for reduction of vibration. The exposure to vibration was measured using to the ISO 5349(1986) method. Vibration acceleration and frequency spectra for each tool were determined on-line replicating actual working conditions and analyzed together with exposure time for evaluating individual worker exposure. Eight pneumatic hand tools, 60 workers exposured to hand-arm vibration, and three pairs of gloves were involved in this study. Results are summarized as follows. 1. Dominant frequencies of vibration for all tools(n=8) measured in this study ranged from 250 Hz to 800 Hz. 2. There was no significant correleration between dominant frequencies and free running speed (p>0.05). 3. Total predicted exposure times of using impact, hammer type did not exceed 40 minutes, but metal finish task, using grinder and sander exceeded 40 minutes. Total exposure time affected significantly the frequency-weighted, 4 hr equivalent acceleration. 4. Predicted prevalence and observed exposure period data were compared in workers(n=60), according to ISO 5349. In this results, 23(50.0 %) and 24(48.07 %) persons exceeded the mean latency periods for vibration-induced white finger(VWF) at 10 % (n=46) and 50 % (n=52) standards, respectively. On the basis of ISO equation, mean latent periods for VWF were 3.23, 4.72 years at 10 %, 50 % standards, respectively. 5. Reduction of vibration by gloves was evaluated. Since impact pneumatic tools produced low frequency vibrations, conventional gloves did not provide any protection. Gloves A and C amplify somewhat the signal at frequency below 400 Hz; the attenuation increases progressively by frequency to reach 18 dB ($7.94{\times}10^{-6}m/s^2$) at 1,000 Hz, slightly worsening Glove B did not provide any protection and made the situation slightly worse. However, since they make the hands warm, the occurrence of vibration-induced white fingers may be reduced.

  • PDF

Digital Platform Government Promotion and Response Direction as a National Task : Focusing on the Impact that Will Have on the Management of Public Records (국정과제로서의 디지털플랫폼정부 추진과 대응 방향 공공기록물 관리에 미치게 될 영향을 중심으로)

  • Jeong, SangMyung
    • The Korean Journal of Archival Studies
    • /
    • 제77호
    • /
    • pp.37-74
    • /
    • 2023
  • As the Yoon Seok-yeol administration enters its second year in office, it is beginning to vigorously promote policies related to the "digital platform government," which is the 11th of the 120 national tasks. Accordingly, the Digital Platform Government Committee established and reported the 'Digital Platform Government Realization Plan' to the President in April 2023, and the 「Act on Provision and Use of Public Data」 and 「Data An amendment to the Act on the Vitalization of Infrastructure Administration" was submitted to the National Assembly in June 2023. In addition, the 「Regulations on the Promotion of Administrative Efficiency and Collaboration」, which is a Presidential Decree, was revised to 「Regulations on Operation and Innovation of Administrative Affairs」, including the name change, to effectively promote innovation in administrative work, and was completed on June 27, 2023. Therefore, this study aims to examine the trends of public institutions related to the digital platform government as a government task, and discuss whether the recent trends will affect the management of institutional records. Indications to respond to the government's digital platform, which is leading the way, it was emphasized that the operation of the current Medical Records Act is strange.

Modelling of Fault Deformation Induced by Fluid Injection using Hydro-Mechanical Coupled 3D Particle Flow Code: DECOVALEX-2019 Task B (수리역학적연계 3차원 입자유동코드를 사용한 유체주입에 의한 단층변형 모델링: DECOVALEX-2019 Task B)

  • Yoon, Jeoung Seok;Zhou, Jian
    • Tunnel and Underground Space
    • /
    • 제30권4호
    • /
    • pp.320-334
    • /
    • 2020
  • This study presents an application of hydro-mechanical coupled Particle Flow Code 3D (PFC3D) to simulation of fluid injection induced fault slip experiment conducted in Mont Terri Switzerland as a part of a task in an international research project DECOVALEX-2019. We also aimed as identifying the current limitations of the modelling method and issues for further development. A fluid flow algorithm was developed and implemented in a 3D pore-pipe network model in a 3D bonded particle assembly using PFC3D v5, and was applied to Mont Terri Step 2 minor fault activation experiment. The simulated results showed that the injected fluid migrates through the permeable fault zone and induces fault deformation, demonstrating a full hydro-mechanical coupled behavior. The simulated results were, however, partially matching with the field measurement. The simulated pressure build-up at the monitoring location showed linear and progressive increase, whereas the field measurement showed an abrupt increase associated with the fault slip We conclude that such difference between the modelling and the field test is due to the structure of the fault in the model which was represented as a combination of damage zone and core fractures. The modelled fault is likely larger in size than the real fault in Mont Terri site. Therefore, the modelled fault allows several path ways of fluid flow from the injection location to the pressure monitoring location, leading to smooth pressure build-up at the monitoring location while the injection pressure increases, and an early start of pressure decay even before the injection pressure reaches the maximum. We also conclude that the clay filling in the real fault could have acted as a fluid barrier which may have resulted in formation of fluid over-pressurization locally in the fault. Unlike the pressure result, the simulated fault deformations were matching with the field measurements. A better way of modelling a heterogeneous clay-filled fault structure with a narrow zone should be studied further to improve the applicability of the modelling method to fluid injection induced fault activation.