• 제목/요약/키워드: Assembly Work Time

검색결과 143건 처리시간 0.024초

PDA 및 GPS를 이용한 옥외 작업장 블록 위치 추적 시스템 개발 (Prototype of Block Tracing System for Pre-Erection Area using PDA and GPS)

  • 신종계;이장현
    • 대한조선학회논문집
    • /
    • 제43권1호
    • /
    • pp.87-95
    • /
    • 2006
  • There are hundreds of ship blocks which are under the block assembly, painting, and outfitting assembly works in the pre-erection shops of shipyard. Generally, each block is planned to be processed in a pre-erection shop according to the block type by the long-term production-scheduling before six months. However, many blocks can't be processed in the planned time and the planned shop since the before and after block-processing changes or delays the planned sequential works in pre-erection shops. Therefore, it is essential to monitor the current location of each block and work in process to cope with the changed situation of pre-erection shops. Present study integrates PDA, GPS, and CDMA not only to chase the location of each block but also to exchange the pre-erection work order and the work report between the production-scheduling server and the production managers in the pre-erection shops. This study shows a prototype for the block tracing and process monitoring in the pre-erection shops.

사각패턴으로 구축된 초소형 공장의 디지털 조립 시뮬레이션 (Digital Assembly Simulation of Micro Factory Constructed with Rectangular Pattern)

  • 박상호;최성일;무랄리;서주현;송준섭;박세진
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.64-69
    • /
    • 2008
  • In recent years, most of the researchers have been working on micro system manufacturing technological environment. With this international trend and one of the key researches in Korea, this paper gives the keynote on manufacturing the micro-scaled part with digital micro factory and its simulation. In order to construct and estimate reconfigurable simulation time, the digital simulation has been performed for the micro factory and for ultra small machines. From simulation result we came to know that micro factory requires less work-in space and processing time to manufacture micro-scaled part with different environment.

시뮬레이션을 이용한 혼합모델 조립라인밸런싱 (Mixed Model Assembly Line-Balancing Using Simulation)

  • 임석진;김경섭;박면웅;김승권
    • 한국시뮬레이션학회논문지
    • /
    • 제11권4호
    • /
    • pp.69-80
    • /
    • 2002
  • This study deals with the productivity improvement on a flow production system with the consideration of line-balancing. In a flow production system, similar product models are produced on a same assembly line, the predefined process order and the limitation of total worker number. The system can be increased the work-in -process(WIP) inventory and the worker's idle time. In this study, the worker assignment model is developed to assign evenly workload of process to each product model in such a manner that each process has the different number of worker. This worker assignment model is the mathematical model that determines worker number in each process such that the idle time of processes is reduced and the utilization of worker is improved. We use a simulation technique to simulate the production line proposed by the mathematical model and apply real production line. With the result of simulation, this study analyzes the propriety of production line and proposes the alternatives of new production line

  • PDF

자동차 생산계획 시스템에서 제약만족기법을 이용한 생산 시퀀스 모듈 구현 (Implementation of a Vehicle Production Sequencing Module Using Constraint Satisfaction Technique for Vehicle Production Planning System)

  • 하영훈;우상복;안현식;한형상;박영진
    • 산업공학
    • /
    • 제16권3호
    • /
    • pp.352-361
    • /
    • 2003
  • Vehicle manufacturing plant is a typical mixed-model production system. Generally it consists of three main shops including body shop, painting shop and assembly shop in addition to engine shop. Each shop contains diverse manufacturing processes, all of which are integrated in a form of flow line. Due to the high pressure from the market requesting small-volume large variety production, production planning becomes very critical for the competitiveness of automotive industry. In order to save costs and production time, production planning system is requested to meet some designated requirements for each shop: to balance the work load in body and assembly shops, and to minimize the number of color changes in painting shop. In this context, we developed a sequencing module for a vehicle production planning system using the ILOG Solver Library. It is designed to take into account all the manufacturing constraints at a time with meeting hard constraints in body shop, minimizing the number of soft constraints violated in assembly shop, and minimizing the number of color changes in painting shop.

시뮬레이션을 이용한 특수 고기능 의류업체의 생산라인 설계에 관한 연구 (Production Line Planning for Functional Sports Wear using Simulation Model)

  • 최정욱
    • 한국의류학회지
    • /
    • 제26권8호
    • /
    • pp.1205-1215
    • /
    • 2002
  • The purpose of this study was to develop a production line using simulation method, which could improve work allocation, labor utility and productivity. Using simulation software AIM, a simulation model of functional sports wear assembly line was developed. A functional sports wear production factory were analysed to gather data necessary for this research. Factory layouts, production facilities, work time of each unit jobs were investigated. The data obtained were used as to build a base simulation model. Then, the base simulation model was verified using the obtained data, such as daily productivity. Using simulation method, low alternative production plans were suggested, which were to enhance productivity, and work efficiency and to reduce queue length and throughput time.

Prediction of the welding distortion of large steel structure with mechanical restraint using equivalent load methods

  • Park, Jeong-ung;An, Gyubaek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권3호
    • /
    • pp.315-325
    • /
    • 2017
  • The design dimension may not be satisfactory at the final stage due to the welding during the assembly stage, leading to cutting or adding the components in large structure constructions. The productivity is depend on accuracy of the welding quality especially at assembly stage. Therefore, it is of utmost importance to decide the component dimension during each assembly stage considering the above situations during the designing stage by exactly predicting welding deformation before the welding is done. Further, if the system that predicts whether welding deformation is equipped, it is possible to take measures to reduce deformation through FE analysis, helping in saving time for correcting work by arresting the parts which are prone to having welding deformation. For the FE analysis to predict the deformation of a large steel structure, calculation time, modeling, constraints in each assembly stage and critical welding length have to be considered. In case of fillet welding deformation, around 300 mm is sufficient as a critical welding length of the specimen as proposed by the existing researches. However, the critical length in case of butt welding is around 1000 mm, which is far longer than that suggested in the existing researches. For the external constraint, which occurs as the geometry of structure is changed according to the assembly stage, constraint factor is drawn from the elastic FE analysis and test results, and the magnitude of equivalent force according to constraint is decided. The comparison study for the elastic FE analysis result and measurement for the large steel structure based on the above results reveals that the analysis results are in the range of 80-118% against measurement values, both matching each other well. Further, the deformation of fillet welding in the main plate among the total block occupies 66-89%, making welding deformation in the main plate far larger than the welding deformation in the longitudinal and transverse girders.

유연한 조립 시스템의 단기 생산 스케듈링과 라우팅에 관한 연구 (Short-Time Production Scheduling and Parts Routing for Flexible Assembly Lines)

  • 신옥근
    • 한국정보처리학회논문지
    • /
    • 제2권6호
    • /
    • pp.823-830
    • /
    • 1995
  • 종래의 단순 조립 시스템과는 달리 유연한 조립 시스템의 단기 생산계획 수립시에 는 작업 순서, 작업할당, 라우팅, 실시간 제어등을 복합적으로 고려해야 유연한 시스템 의 장점을 최대한 활용할 수 있다. 그러나 이러한 복합적인 스케듈링 문제의 최적해는 구하기가 매우 어려울 뿐 아니라 최적해를 알고 있다. 하더라도 조립기기의 고장등과 같은 교란에 적절히 대응할 수 없다. 본고에서는 유연한 조립 시스템을 위해 단기 생산계획과 조립 작업의 순서, 그리고 manipulator에 대한 작업의 할당을 미리정하지 않고 순간 순간의 FAL의 상태에 따라 동적으로 결정함으로써 FAL의 효율을 높이는 동시 에 복잡한 단기 생산계획 수립을 배제할 수 있는 실시간 제어 방법을 제안한다., 이 방법은 어떤 manipulator에서 작업이 끝난 반제품의 다음 작업을 위한 목적 manipulator 는 두 manipulator 사이의 거리, 목적 manipulator 의 작업 수행시간과 당시의 부하, 그리고 필요한 부품의 유무등을 종합하여 manipulator들 사이의 부하를 균등하게 배분함 으로써 주어진 양의 제품을 가능한한 빠른 시간내에 조립할 수 있게 한다. 본고에서는 조립 공정의 특성과 FAL의 모델에 대해 서술한 후 실시간 제어를 위한 heuristic알고 리즘을 제시 하였으며 시뮬레이션을 통하여 제안한 알고리즘을 검증하였다. 시뮬레이 션 결과, 제안하는 동적 파일로팅을 통하여 복잡한 단기 생산 계획수립 없이도 FAL을 최적의 상태로 제어할수 있을 뿐 아니라 기기의 고장등의 같은 생산 환경의 변화에 잘 적용할 수 있음을 알수 있었다.

  • PDF

A Mathematical Model for Converting Conveyor Assembly Line to Cellular Manufacturing

  • Kaku, Ikou;Gong, Jun;Tang, Jiafu;Yin, Yong
    • Industrial Engineering and Management Systems
    • /
    • 제7권2호
    • /
    • pp.160-170
    • /
    • 2008
  • This paper proposes a mathematical model for converting conveyor assembly line to cellular manufacturing in complex production environments. Complex production environments refer to the situations with multi-products, variant demand, different batch sizes and the worker abilities varying with work stations and products respectively. The model proposed in this paper aims to determine (1) how many cells should be formatted; (2) how many workers should be assigned in each cell; (3) and how many workers should be rested in shortened conveyor line when a conveyor assembly line should be converted, in order to optimize system performances which are defined as the total throughput time and total labor power. We refer the model to a new production system. Such model can be used as an evaluation tool in the cases of (i) when a company wants to change its production system (usually a belt conveyor line) to a new one (including cell manufacturing); (ii) when a company wants to evaluate the performance of its converted system. Simulation experiments based on the data collected from the previous documents are used to estimate the marginal impact that each factor change has had on the estimated performance improvement resulting from the conversion.

The Qualification Test of KSLV-I(NARO) Assembly Complex

  • Jin, Seung-Bo;Cho, Byoung-Gyu;Lee, Chang-Bae;Chun, Young-Doo;Seo, Dong-Chan;Chung, Eui-Seung
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.49.1-49.1
    • /
    • 2009
  • Ground Complex, which is located at Naro Space Center, consists of Assembly Complex(AC) and Launch Complex(LC) which is necessary for successful launch of KSLV-I(NARO). AC consists of Assembly/Testing Building(ATB), Payload Processing Building(PPB), Kick Motor Building(KMB). The purpose of AC is accepting of KSLV-I components, testing, checkout, assembly(disassembly) of the launch vehicle(LV), readiness for transferring LV to LC, accepting of integrated Launch Vehicle(ILV) in case of launch cancellation and short/long time storage, and so on. Qualification tests(QT) for the total system at AC are carried out to check hardware used for operations with first stage unit mockup, upper stage unit Mockup and integrated mockup(GTV). The qualification tests is carried out according to program and procedures of QT. By course of this process, AC is certificated that all the systems and facilities of AC are guaranteed by the fulfillment of technological operations envisioned in the program of qualification tests during the work with the mock-up.

  • PDF

건설공정의 낭비제거를 통한 생산성 향상 방안 (Productivity Improvement through the Waste Elimination of Construction Process)

  • 문정문;김창덕
    • 한국건설관리학회논문집
    • /
    • 제3권4호
    • /
    • pp.93-103
    • /
    • 2002
  • 철근공사는 거푸집공사와 더불어 건축물의 구조적 안정성과 내구성 및 공기에 가장 큰 영향을 미치고 있는 공사이다. 그러나 국내 철근 콘크리트 공사는 철근현장가공조립을 주로 하고있어 낮은 생산성을 갖고 있는 실정이다. 따라서 본 논문은 생산성 향상을 위해 철근현장가공조립 프로세스를 부가가치 생산성향상을 위한 낭비요소를 분석하였다. 낭비요소 분석은 비가치창출 작업으로 인해 발생하는 요소로 철근현장가공조립의 가치분석을 통해 부가가치를 극대화 하고자 하였다. 그 결과 가치창출작업들이 비가치창출 작업보다 월등히 적다는 것으로 분석되었다. 특히, 본 논문에서 낭비는 불필요한 작업 단계와 인력, 장비, 자재, 시간 등에서 낭비되고 있었다. 또한 흐름생산이 되지 않고, 과잉생산을 하고 있는 것으로 조사되었으며, 가치의 변화가 필요한 것으로 분석되었다. 본 논문에서는 부가가치 생산성 향상을 위해 프로세스 상에 내재되어 있는 낭비요소를 분석하여 부가가치를 창출하는 가치창출 작업을 최대화하고, 비 가치창출작업을 최소화하는데 목적이 있다.