• Title/Summary/Keyword: Assembly Structure

Search Result 817, Processing Time 0.029 seconds

Manufacturing of an All Composite Unmanned Aerial Vehicle (전기체 복합재 무인항공기 제작)

  • 김동민;허명규;강공진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.163-166
    • /
    • 2002
  • For the development of an all composite unmanned aerial vehicle (UAV), manufacturing consideration in design phase, works for composite parts fabrication, subassembly and final assembly are summarized. In design phase, to maximize the advantage of composite material, manufacturing processes such as cocuring, cobonding and secondary bonding are introduced. For the curing of designed parts, composite tools are designed and manufactured. Assembly jigs are designed to satisfy dimensional tolerance of the structure. Inspection criteria are established and applied to the manufacturing. Technical data about inspection items and methods are summarized as manufacturing specifications for the mass production of the UAV structure.

  • PDF

Evaluation of Ease of Exchange of Subassembly Considering Module (모듈을 고려한 조립군의 교체성 평가)

  • 목학수;양태일;곽동영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.170-180
    • /
    • 2000
  • In this paper, to evaluate ease of exchange of subassembly considering module, it needs to analyze structure and function of subassembly, assembly and disassembly process. Exchange process of module can be divided into pre-process and in-process, and determination factors of exchange process are defined by analyzing characteristics of assembly and disassembly process. Based on the analysis of characteristics for structure and function of subassembly, influential factors of module can be proposed. Considered the interrelationship between determination factors of ease of exchange and influencing factors of module, ease of exchange can be evaluated.

  • PDF

CAD System of New Concept to Support Top-Down Approach in Design (하향식 설계방식을 지원하는 새로운 개념의 CAD 시스템)

  • 김성환;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1604-1618
    • /
    • 1995
  • In the process of mechanical assembly design, assembly modeling systems have been used mainly for the design verification before manufacturing by enabling to check the interference and/ or the dynamic and kinematic performance. However, the conventional assembly modeling systems have a shortcoming that they can not be used in the initial design stage but can be used only after the design is fully completed. In other words conventional assembly modeling systems provide bottom-up modeling which means that the detailed modeling of components must precede the definition of relationships between them. To resolve this problem, an assembly modeling system is proposed to provide a top-down modeling environment in which components and assembly can be modeled simultaneously. To this end, an assembly data structure suitable for top-down assembly modeling has been established. Feature positioning Module(FPM) using geometric constraints has been also developed. The Sekective Solving Method proposed for FPM is based on the priority between the constraint equations and enables the designer's intent expressed by geometric constraints to be maintained throughout the whole modeling process. Finally, the feature based modeling technique using two-level features has been developed. Two-level features include an abstract model and a detailed model in a merged form in non-manifold data frame.

Welding Quality Evaluation on the LASER Welding Parts of the Zircaloy Spacer Grid Assembly for PWR Fuel Assembly(II) (경수로 원전연료용 질칼로이 지지격자체의 LASER 용접품질 평가(II))

  • Song, Gi-Nam;Yun, Gyeong-Ho;Lee, Gang-Hui;Kim, Su-Seong;Han, Hyeong-Jun
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.70-72
    • /
    • 2005
  • Nuclear fuel assemblies for pressurized water reactors(PWR) are loaded in the reactor core throughout the residence time of three to five years. A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly. The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, laser welding qualities of the Zircaloy spacer grid assembly welded by two welding companies, such as weld strength, weld penetration depth, and weld bead size, are examined and compared.

  • PDF

A Study on the Development of Construction Production Rates System for Estimating Proper Construction Expenses of Off-Site Construction (OSC) Based PC Structure Factory-Built Assembly (OSC기반 PC구조 공장제작 적정 공사비 산정을 위한 품셈체계 개발 연구)

  • Lee, Jeongwook;Lee, Hansoo;Lee, Chiho;Noh, Hyunseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.6
    • /
    • pp.89-100
    • /
    • 2022
  • The development of the Construction Production Rates System for appropriate construction cost calculation has recently come to the fore as a means of invigorating OSC based PC structure which currently needs institutional frameworks. PC structure based construction expenses consist of the factory-built assembly, transportation and on-site installation. Recently, in the field of transportation and site installation, research on product structure development is being conducted, such as presenting the standard product calculation system reflecting the results of field survey for each subsidiary materials (Lee et al., 2021). On the other hand, there is no ongoing research on estimating construction expenses of Factory-built assembly. This study suggests Construction Production Rates System which can be used for PC subsidiary materials based Factory-built assembly cost estimations. For the research, work types for the construction procedures have been categorized, and the standard input manpower suitable for the corresponding work characteristics has been derived from analyzing the associated Construction Standard Production Rates for each work type. Also, as the research referred PC subsidiary materials (such as columns, beams, walls, and slab, as well as on-site installation) and the standard number of workforce based on work types, one can calculate direct labor cost, using what the research shows. In addition, it suggests that the size of individual subsidiary materials be the extra cost factor, by using the characteristics that productivity changes depending on the size(m3) of subsidiary materials. It is expected that the research can contribute to objectively verifying factory-built assembly cost through of PC structure, which currently relies on estimates.

Assembly Performance Evaluation for Prefabricated Steel Structures Using k-nearest Neighbor and Vision Sensor (k-근접 이웃 및 비전센서를 활용한 프리팹 강구조물 조립 성능 평가 기술)

  • Bang, Hyuntae;Yu, Byeongjun;Jeon, Haemin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.259-266
    • /
    • 2022
  • In this study, we developed a deep learning and vision sensor-based assembly performance evaluation method isfor prefabricated steel structures. The assembly parts were segmented using a modified version of the receptive field block convolution module inspired by the eccentric function of the human visual system. The quality of the assembly was evaluated by detecting the bolt holes in the segmented assembly part and calculating the bolt hole positions. To validate the performance of the evaluation, models of standard and defective assembly parts were produced using a 3D printer. The assembly part segmentation network was trained based on the 3D model images captured from a vision sensor. The sbolt hole positions in the segmented assembly image were calculated using image processing techniques, and the assembly performance evaluation using the k-nearest neighbor algorithm was verified. The experimental results show that the assembly parts were segmented with high precision, and the assembly performance based on the positions of the bolt holes in the detected assembly part was evaluated with a classification error of less than 5%.

Manufacturing of Plastic Noise Barrier Structure Using Extrusion Molding (압출성형을 이용한 플라스틱 방음벽 구조물 제작 연구)

  • Kim, Hyung-Kook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.76-81
    • /
    • 2021
  • A plastic noise barrier is a structure installed to minimize noise, and it is composed of the main plate, sound-absorbing plate, and sound-absorbing material. Plastic noise barrier structures have several advantages compared to other products, such as light weight, anticorrosion, durability, easy assembly, rapid construction, and low costs. In this study, the main and sound-absorbing plates were manufactured through extrusion molding, and the sound-absorbing plate was finished with a press to improve the conventional injection molding. Extrusion molding dies and punch dies were designed, and a profile extrusion-molding system was developed. Thus, inexpensive and efficient sound-absorbing and main plates can be produced, and the noise barrier structure can be assembled rapidly. Additionally, a noise barrier structure with extended service life and excellent quality can be constructed by creating uniform free space to accommodate increased temperatures after assembly and installation.

Ground Beam-Joint Topology Optimization for Design and Assembly of Multi-Piece Frame Structures (그라운드 빔 조인트 기반 위상최적화법을 이용한 프레임 구조물의 조립 위치 및 강도 설정)

  • Jang, Gang-Won;Kim, Myeong-Jin;Kim, Yun-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.688-693
    • /
    • 2007
  • Most frame structures cannot be manufactured in a single-piece form. Ideally, when a structure is built up by assembling multi pieces, assembly at the joints should be rigidly performed enough to have almost full stiffness, which is difficult for practical reasons such as manufacturing cost and time. In this research, we aim to develop a manufacturability-oriented compliance-minimizing topology optimization using a ground beam model incorporating additional zero-length elastic joint elements. In the present formulation, design variables control the stiffness of zero-length elastic joints, not the stiffness of beams. Because joint stiffness values at the converged state can be utilized to select candidate assembly locations and their strengths, the technique is extremely useful to design multi-piece frame structures. An optimal layout is also extracted based on the stiffness values.

  • PDF

Folding of Coordination Polymers into Double-Stranded Helical Organization

  • Kim, Ho-Joong;Lee, Eun-Ji;Lee, Myong-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.248-248
    • /
    • 2006
  • The notable feature of the Cu(II) coordination polymer investigated here is its ability to self-assemble into a double-stranded helical structure with regular grooves along the helical axis, through the combination of metal-chloride dimeric interactions and repulsive interactions, as an organizing force. It is also remarkable that the double-stranded helices self-organize into a 2-D columnar structure in both the bulk state and aqueous solution. These results represent a unique example that weak metal-ligand bridging interactions can provide a useful strategy to construct stable double-stranded helical nanotubes.

  • PDF

접촉결합부를 갖는 원통구조물의 열적,동적 특성 연구

  • 김선민;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.244-249
    • /
    • 1997
  • Internal and external heat sources will cause to deform to machine elements in the contact joint of structure,which results in the change of contact pressure distribution different from initial assembly. Heat induced variations of contact pressure will change the static and dynamic properties such as contact stiffness,damping as well as contact heat conduction in the structure. In order to design and control the intelligent machine tool operating in variant conditions more sophisticatedly, the good prediction for the changes of prescribed propeties are strongly required especially in the contact elements adjacent to the rotational or linear bearing This paper presents some computational and experimental results in regard to static and dynamic characteristics of the press-fitted bush and shaft assembly which is a model of the bearing innerrace and shaft assembly. In the condition of heat generation on the outer surface of the bush,the effects of changes in the negative clearance and the heat flux on pressure distribution and dynamic properties are investigated. Results of this study show that the edge effect of the bush and the initial clearance have effects on the transient dynamic characteristics significantiy.