• Title/Summary/Keyword: Assay validation

Search Result 187, Processing Time 0.023 seconds

Validation of a Real-Time RT-PCR Method to Quantify Newcastle Disease Virus (NDV) Titer and Comparison with Other Quantifiable Methods

  • Jang, Juno;Hong, Sung-Hwan;Kim, Ik-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.100-108
    • /
    • 2011
  • A method for the rapid detection and quantification of Newcastle disease virus (NDV) produced in an animal cell culture-based production system was developed to enhance the speed of the NDV vaccine manufacturing process. A SYBR Green I-based real-time RT-PCR was designed with a conventional, inexpensive RT-PCR kit targeting the F gene of the NDV LaSota strain. The method developed in this study was validated for specificity, accuracy, precision, linearity, limit of detection (LOD), limit of quantification (LOQ), and robustness. The validation results satisfied the predetermined acceptance criteria. The validated method was used to quantify virus samples produced in an animal cell culture-based production system. The method was able to quantify the NDV samples from mid- or late-production phases, but not effective on samples from the early-production phase. For comparison with other quantifiable methods, immunoblotting, plaque assay, and tissue culture infectious dose 50 ($TCID_{50}$) assay were also performed with the NDV samples. The results demonstrated that the real-time RT-PCR method is suitable for the rapid quantification of virus particles produced in an animal cell-culture-based production system irrespective of viral infectivity.

Hormone-Mimic Chemicals and Their Possible Endocrine Disruption - Development of Testing Methods -

  • Imai, Kiyoshi
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.313-317
    • /
    • 2001
  • The Ministry of Health and Welfare of Japan has set up six research groups concerning the endocrine disrupting chemicals. One of these projects was "A study on development of testing methodology for health effects due to exposure of environmental endocrine disruptors". In this paper, three topics are described. In OECD collaboration for pre-validation of uterotrophic assay, the most sensitive response to ethnyl estradiol was noted in the ovarectomized rats treated subcutaneously for 7 days. Secondly, it was suggested that changes of the serum $\alpha_{2u}$-globulin level may be a sensitive parameter for detecting the estrogenic activities of chemicals. Finally, development of the sexually dimorphic nucleus of preoptic area in the brain oj male rats was inhibited by the treatment with estrogenic chemicals, and their masculine behaviors and reproductive abilities were impaired after sexual maturation. In conclusion, these parameters are considered to be sensitive endpoints for testing estrogenic chemicals.chemicals.

  • PDF

An HPLC method for the determination of thioctic acid in raw material and tablets

  • Mai, Xuan-Lan;Ahn, GyeChan;Lee, SeokHan;Kang, Jong-Seong;Woo, Mi Hee;Na, Dong-Hee;Chun, In-Koo;Kim, Kyeong Ho
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.221-225
    • /
    • 2017
  • Thioctic acid is a vitamin-like antioxidant which is prepared as tablets and injection. The Korean Pharmacopoeia (KP XI) contains monograph for the quality control of raw thioctic acid using ultra-violet visible spectrophotometry and its formulations using high performance liquid chromatography (HPLC). In British Pharmacopoeia 2013 (BP2013), another HPLC method is used for the assay test of thioctic acid material. For the international harmonization, we present an HPLC method for quantitation of thioctic acid in both raw material and tablets. Method validation was performed to determine linearity, precision, accuracy, system suitability, and robustness. The linearity of calibration curves in the desired concentration range was high ($r^2=0.9995$), while the RSDs for intra- and inter-day precision were 0.93 ~ 1.26 % and 1.40 ~ 1.76 %, respectively. Accuracies ranged from 98.13-100.00 %. Since the system suitability, intermediate-precision and robustness of the assay were satisfactory, this method will be a valuable addition to the Korean Pharmacopoeia (KP XI).

Detection of Pathogenic Yersinia enterocolitica Strains by a Rapid and Specific Multiplex PCR Assay

  • Kim Young-Sam;Kim Jong-Bae;Eom Yong-Bin
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.333-339
    • /
    • 2004
  • A multiplex PCR assay targeting the yst and 16S rRNA genes of Yersinia enterocolitica was developed to specifically identify pathogenic Y. enterocolitica from pure culture. Simultaneous amplification of 145 and 416 bp fragments of the yst and 16S rRNA genes of Y. enterocolitica was obtained using the primer pairs in a single reaction. Validation of the assay was performed with the reference Yersinia strains and other members of the family Enterobacteriaceae. The defined primer pairs amplified the targeted sequence from only pathogenic Y. enterocolitica strains, whereas none of the other bacterial species yielded any amplified fragments. Within an assay time of 4 h, this assay offers a very specific, reliable, and inexpensive alternative to the conventional phenotypic assays used in clinical laboratories to identify pathogenic Y. enterocolitica.

  • PDF

Real-Time PCR for Quantitative Detection of Bovine Parvovirus during Manufacture of Biologics (생물의약품 제조공정에서 Bovine Parvovirus 정량 검출을 위한 Real-Time PCR)

  • Lee, Dong-Hyuck;Lee, Jung-Hee;Kim, Chan-Kyong;Kim, Tae-Eun;Bae, Jung-Eun;Kim, In-Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.173-181
    • /
    • 2008
  • Bovine blood, cell, tissue, and organ are used as raw materials for manufacturing biologics such as biopharmaceuticals, tissue-engineered products, and cell therapy. Manufacturing processes for the biologics have the risk of viral contamination. Therefore viral validation is essential in ensuring the safety of the products. Bovine parvovirus (BPV) is one of the common bovine pathogens and has widely been known as a possible contaminant of biologics. In order to establish the validation system for the BPV safety of biologics, a real-time PCR method was developed for quantitative detection of BPV contamination in raw materials, manufacturing processes, and final products. Specific primers for amplification of BPV DNA were selected, and BPV DNA was quantified by use of SYBR Green 1. The sensitivity of the assay was calculated to be $1.3{\times}10^{-1}\;TCID_{50}/mL$. The real-time PCR method was validated to be reproducible and very specific to BPV. The established real-time PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with BPV. BPV DNA could be quantified in CHO cell as well as culture supernatant. Also the real-time PCR assay could detect $1.3{\times}10^0\;TCID_{50}/mL$ of BPV artificially contaminated in bovine collagen. The overall results indicated that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of BPV contamination during manufacture of biologics.

Validation of Photo-comet Assay as a Model for the Prediction of Photocarcinogenicity

  • Kim, Ji-Young;Koh, Woo-Suk;Lee, Mi-Chael
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.423-429
    • /
    • 2006
  • Recent reports on the photocarcinogenicity and photogerotoxicity of many compounds led to an increasing awareness for the need of a standard approach to test for photogenotoxicity. The comet assay has been recently validated as a sensitive and specific test system for the quantification of DNA damage. Thus, the objectives of this study are to investigate the utility of photo-comet assay for detecting photo-mutagens, and to evaluate its ability to predict rodent photo-carcinogenicity. Photo-comet assays were performed using L5178Y $Tk^{+/-}$ mouse lymphoma cells on five test substances (8-methoxypsoralen, chlorpromazine, lomefloxacin, anthracene and retinoic acid) that demonstrated positive results in photocarcinogenicity tests. For the best discrimination between the test substance-mediated DNA damage and the undesirable DNA damage caused by direct UV absorption, a UV dose-response of the cells in the absence of the test substances was firstly fnalized. Out of 5 test substances, positive comet results were obtained for chlorpromazine, lomefloxacin, anthracene and retinoic acid while 8-methoxypsoralen found negative. An investigation into the predictive value of this photo-comet assay for determining the photocarcinogenicity showed that photo-comet assay has relatively high sensitivity. Therefore, the photo-comet assay with mammalian cells seems to be a good and sensitive predictor of the photocarcinogenic potential of new substances.

ELISA Validation for anti-PA Antibody Titer Measurements (항-보호항원 항체의 역가 측정을 위한 효소면역측정법 밸리데이션)

  • Kim, Yu-Gene
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.478-485
    • /
    • 2010
  • The vaccine is biological pretreatment that improves immunity to a particular disease. We can get immunity from producing antibody with injection antigen which has ability to defense against the disease. The ELISA is the most widely used method to measure antibody titer. We have developed and performed validation of ELISA according to the guideline of KFDA and ICH. In this paper, we have verified ELISA method is an excellent method to measure the titer of anti-PA antibody. We have constructed recombinant protective antigen among anthrax toxins and used as antigen of ELISA. In this validation, we have evaluated precision (repeatability, interlaboratory precision), specificity, linearity(range) and LOD, which are validation articles suggested by guideline. Inter-person precision was replaced with inter-laboratory precision. From the results, we have confirmed high precision in all experiments with CV under 20%.

Quantitative Detection of Residual E. coli Host Cell DNA by Real-Time PCR

  • Lee, Dong-Hyuck;Bae, Jung-Eun;Lee, Jung-Hee;Shin, Jeong-Sup;Kim, In-Seop
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1463-1470
    • /
    • 2010
  • E. coli has long been widely used as a host system for the manufacture of recombinant proteins intended for human therapeutic use. When considering the impurities to be eliminated during the downstream process, residual host cell DNA is a major safety concern. The presence of residual E. coli host cell DNA in the final products is typically determined using a conventional slot blot hybridization assay or total DNA Threshold assay. However, both the former and latter methods are time consuming, expensive, and relatively insensitive. This study thus attempted to develop a more sensitive real-time PCR assay for the specific detection of residual E. coli DNA. This novel method was then compared with the slot blot hybridization assay and total DNA Threshold assay in order to determine its effectiveness and overall capabilities. The novel approach involved the selection of a specific primer pair for amplification of the E. coli 16S rRNA gene in an effort to improve sensitivity, whereas the E. coli host cell DNA quantification took place through the use of SYBR Green I. The detection limit of the real-time PCR assay, under these optimized conditions, was calculated to be 0.042 pg genomic DNA, which was much higher than those of both the slot blot hybridization assay and total DNA Threshold assay, where the detection limits were 2.42 and 3.73 pg genomic DNA, respectively. Hence, the real-time PCR assay can be said to be more reproducible, more accurate, and more precise than either the slot blot hybridization assay or total DNA Threshold assay. The real-time PCR assay may thus be a promising new tool for the quantitative detection and clearance validation of residual E. coli host cell DNA during the manufacturingprocess for recombinant therapeutics.

Pre-validation of Colony Forming Efficiency Assay for Assessing the Cytotoxicity of Nanomaterials (나노물질의 세포독성 평가법으로 Colony Forming Efficiency Assay에 대한 검증연구)

  • Jo, Eunhye;Lee, Jaewoo;Park, Sun-Young;Kim, Pilje;Choi, Kyunghee;Eom, Igchun
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • Objectives: The cytotoxcities of Au, Ag, SWCNT, $SiO_2$, and ZnO nanomaterials were evaluated in order to assess their potential toxicological effects in in vitro cell models using colony forming efficiency (CFE) assay. Methods: The CFE assay of the test materials was carried out on Hep G2 cells. The size distribution of nanomaterials was studied by transmission electron microscopy (TEM). Changes in cell viability after treatment with a toxicant will result in a decreased number of colonies formed in comparison to solvent. Results: The TEM images show that all the particles except SWCNT and ZnO can be considered approximately spherical. The gold and $SiO_2$ nanoparticles show no response (no toxicity) in concentration response experiments. A statistically significant toxic effect was found in Hep G2 cells treated with Ag, SWCNT and ZnO nanomaterials. Conclusion: In this study, we considered CFE assay to be a promising test for screening studies for cytotoxicity with physicochemical analysis.