• Title/Summary/Keyword: Aspheric RGP Lens

Search Result 3, Processing Time 0.019 seconds

Comparison of preference and Empirical Fit Success Rates for Spheric and Aspheric RGP Lenses (구면 및 비구면 디자인 RGP 콘택트렌즈의 선호도와 경험적 피팅 성공률 비교)

  • Kim, Jai-Min;Kim, Soo-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.2
    • /
    • pp.9-16
    • /
    • 2008
  • To assess the preference and efficacy of empirical fitting methods with spheric and aspheric RGP lenses. Methods: Healthy 37 subjects were fitted with spheric design (diameter 9.3 mm) on right eye and aspheric design (dia 9.6 mm) on the left eye. Base curves which were fitted empirically (using on-K, Kavg-0.50D (or 1.00D) and manufacturer's recommended fitting guide) were compared with another base curve which obtained the best diagnostic fit with spheric and aspheric RGP lenses. The preference and fitting type (lid attachment or interpalpebral) for two design lenses were investigated 2 weeks after fitting RGP lenses. Results: Of 33 successful RGP lens-wearing subjects, 76% preferred spheric design compared with 24% of aspheric RGP lens wearers. Sixty seven percent were fitted with lid-attachment in spheric lenses, whereas 64% were fitted with lid-attachment in aspheric lenses. The acceptable fit success rates within ${\pm}$0.50D of base curves were 97% for the on-K fit, 100% for the Kavg-0.50D fit and 100% of the manufacturer's guide fit compared with the diagnostic fit in spheric design, whereas 91%, 79% and 94% reported on-K, Kavg-1.00D and manufacturer's guide, respectively, in aspheric design. Conclusions: Although aspheric RGP lenses are more popular in the Korean market, it is still preferable to fit subjects with spheric RGP lenses. Empirical fitting may be best accomplished with the spheric lenses using Kavg-0.50D fit and the manufacturer's fitting guide, whereas aspheric RGP lens designs are unacceptable lens fit based on empirical fitting.

  • PDF

A Comparison of the Movement of Aspheric RGP Lens on Cornea by the Amounts of Keratometric Astigmatisms using Keratometer and Corneal Topography (각막곡률계와 각막지형도를 이용한 각막난시 측정값에 따른 비구면 RGP 렌즈의 각막에서 동적움직임 비교)

  • Park, Sang-Il;Lee, Se Eun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.2
    • /
    • pp.123-133
    • /
    • 2011
  • Purpose: The present study was conducted to analyze any difference in the movement of aspheric RGP lens by the amounts of keratometiric astigmatisms using keratometer and corneal topography. Methods: Corneal curvatures in thirty six eyes of males and females of with-the-rule keratometric astigmatisms in their twenties were measured by a keratometer and worn aspheric RGP lenses. Then, lens rotations, vertical and horizontal movements of lens by blinking were measured to compare with lens movements when aspheric RGP lenses were fitted by total keratometric astigmatisms using corneal topography. Results: The case having higher amount of central keratometric astigmatism was 61.1% of subjects, however, 36.1% of subjects showed higher total keratometric astigmatism indicating that central keratometric astigmatism was not always bigger than total keratometric astigmatism. Since over 0.25 diopter difference between total and central keratometric astigmatisms was shown in 19 eyes (52.8% of subjects), the prescription for lens fitting could be changed. Significant difference in horizontal movement was detected with increase of astigmatism when it compared based on the amount of keratometric astigmatism measured by a keratometer. However, there was no significant difference in lens rotation, horizontal and vertical movements by comparison with the amount of total keratometric astigmatism using a corneal topography. When central keratometric astigmatism measured by keratometer was bigger than total keratometric astigmatism estimated by corneal topography, bigger lens rotation was shown compared with opposite case. Also, the tendency of bigger lens rotation was measured with the increase of keratomatric astigmatism in the case of same prescription having same base curves with same amount of keratometric astigmatism but different curvatures. Conclusions: From the present study, we concluded that lens movements on cornea were not totally different when aspheric RGP lens fitted on with-the-rule astigmatism by keratometer and corneal topography. However, there was some difference in certain lens movements. Therefore, we concluded that further study on the relationship between the prescriptions for lens fitting should be conducted for improving the rate of successful lens fitting by keratometer or for the proper application of corneal topography for lens fitting.

A Relationship between Corneal Eccentricity and Stable Centration of RGP Lens on Cornea (각막 이심률과 RGP 렌즈의 중심안정위치와의 상관관계)

  • Park, Eun Hye;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.4
    • /
    • pp.373-380
    • /
    • 2012
  • Purpose: The present study was performed to investigate a relationship between the stable centrations of spherical RGP lens and aspherical RGP lens on cornea and corneal eccentricity. Methods: Two RGP lenses with different designs were fitted in alignment, steep or flat on total 84 eyes having corneal eccentricity of 0.28~0.78. The stable centration of lenses on cornea was analyzed by taking photographs with a high-speed digital camera. Results: The stable centrations of spherical and aspherical RGP lenses in horizontal direction were decentrated to temporal side. More centration to median side was shown when corneal eccentricity was larger. The difference between the stable centrations of spherical and aspheric RGP lenses according to corneal eccentricity was bigger when the fitting state was flatter. The difference in the stable centrations of aspherical RGP lens was smaller than that of spherical RGP lens regardless of fitting status. The stable centrations of spherical and aspherical RGP lenses in vertical direction were located below corneal apex regardless of fitting status however, there was no significant difference analyzed by the variation of corneal eccentricity. However, there were many cases that RGP lenses were in upper eyelid with increasing corneal eccentricity. Conclusions: The consideration of corneal eccentricity is required for RGP lens fitting and manufacturing aspherical RGP lens since the stable centration of spherical RGP lens as well as aspherical RPG lens' centration was changed depending on corneal eccentricity.