• Title/Summary/Keyword: Asphalt concrete pavement

Search Result 308, Processing Time 0.025 seconds

A Study on Normal Range of Surface Deflection for Epoxy Asphalt Pavement using Light Weight Deflectormeter (LWD를 활용한 에폭시 아스팔트 포장의 정상 표면처짐 범위 연구)

  • Park, Ki Sun;Kim, Kyung Nam;Kim, Nak Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.229-236
    • /
    • 2015
  • In this study, the resilient modulus test and Light Weight Deflectormeter (LWD) test were conducted to simulate the moving vehicle load for the evaluation of the internal failure of epoxy asphalt pavement. The Measured displacement in the resilient modulus test of epoxy asphalt concrete showed very little residual deformation under repeated loads unlike the conventional asphalt. Therefore, the test results were evaluated as a normal state due to its similarity with elastic deformation. The deflection results from the resilient modulus tests were converted to the surface deflection modulus and the normal range of surface deflection modulus was estimated applying LWD measurement of 1 SIGMA level. Internal failure of pavements were estimated using the suspicious failure range at $60^{\circ}C$ and hysteresis. Internal moisture penetration and a decrease in bonding were observed in partial areas at $140{\mu}m$ of surface deflection. However, the areas showed inflection points in the hysteresis. Field investigation by suggested criterion indicated a high degree of accuracy.

Tensile Strength of Polymer-Modified Asphalt Concrete at Low-Temperature (폴리머 개질아스팔트 콘크리트의 저온 인장강도 특성)

  • Doh, Young-Soo;Kwon, Seung-Zoon;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.4 no.3 s.13
    • /
    • pp.35-42
    • /
    • 2002
  • Many temperature-related problems are created in asphalt pavement due to the low temperature. In particular, loss of tensile strength due to low temperature is known to be responsible for thermal failure of pavements in cold regions under $-20^{\circ}C$. The objective of this study is to evaluate characteristics of resistance against low-temperature cracking of polymer asphalt concrete mixtures modified with LDPE and SBS. The test results showed that the mixtures had the maximum indirect tensile strength(ITS) at low temperature ranging from $-10^{\circ}C. It was proved through ITS test that the stress due to differential thermal contraction over the tensile strength did generate internal damage at the temperature below $-20^{\circ}C$. It was shown that the asphalt mixtures modified with polymer had better ITS than the normal asphalt mixture at the temperature below $-20^{\circ}C$. Thus the effect of modification was revealed as tensile strength improvement. From the results of this study, it was recommended that polymer-modified asphalt should be used in order to prevent low-temperature cracking in cold region.

  • PDF

Evaluation of Fatigue Resistance of Selected Warm-mix Asphalt Concrete (준고온 아스팔트 콘크리트 피로저항성 평가)

  • Kim, Sungun;Lee, Sung-Jin;Kim, Kwang W.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.29-38
    • /
    • 2020
  • Since some warm-mix asphalt (WMA) concretes were known to show poorer rut resistance than the hot-mix asphalt (HMA) concretes, many studies were performed in efforts of improving its performance at high temperature. The reason is assumed to be due to the moisture remaining in aggregates dried at lower temperature. Therefore, not only the rut resistance, the crack resistance of WMA concrete was also in question. In this study, fatigue life of WMA concrete was evaluated in comparison with HMA using 3-point bending (3PB) beam test. The asphalt mixtures were prepared based on Korean mix-design guide using a 13 mm dense-graded aggregate and 6 binders; two HMA binders and four WMA binders. By 3PB fatigue test, normal (unmodified) and polymer-modified WMA concretes were evaluated in comparison with normal and polymer-modified HMA concretes at a low temperature (-5℃). The results showed that most of WMA concretes showed longer fatigue lives than HMA concretes, even though the same PG binders were used for HMA and WMA. This result indicates that the WMA concretes have stronger resistance against fatigue cracking than HMA at the low temperature, and this result is in contrast to the high-temperature performance test.

Temperature Effect on Pavement Types of Bimodal Tram Dedicated Lane (바이모달 트램 전용선로 포장 형태에 따른 온도의 영향)

  • Park, Young-Kon;Yoon, Hee-Taek;Mok, Jai-Kyun;Kim, Ryang-Gyun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2107-2112
    • /
    • 2010
  • To analyze the effect of temperature on pavement types of dedicated lane, we have performed a temperature monitoring for pavements which were constructed in test track for Bimodal Tram. These pavements classified into four types; natural and artificial lawn, concrete and asphalt. Dedicated lane composed of natural and artificial lawn has a complex structure with concrete slab in contact surface of tires, and with 1m natural or artificial lawn in the middle part of lane. From monitoring results for pavements, dedicated lane with natural lawn shows lower temperature value compared with other dedicated lanes, and it is expected to decrease the heat island effect of conventional road if constructed.

  • PDF

Evaluation of Flexible Pavement Layer Moduli Using the Depth Deflectometer and Flexible Pavement Behavior under Various Vehicle Speeds (아스팔트 콘크리트 포장구조체의 내부처짐에 의한 물성추정과 주행속도에 따른 거동분석)

  • Choi, Jun-Seong;Kin, Soo-Il;Yoo, Ji-hyung
    • International Journal of Highway Engineering
    • /
    • v.2 no.1
    • /
    • pp.135-145
    • /
    • 2000
  • A new procedure needs to be developed to predict the dynamic layer properties under moving truck loads. In this study, a computer code to evaluate layer moduli of asphalt concrete pavement from measured interior deflections at various depths were developed and verified from numerical model tests. Interior deflections of the pavement are measured from Multi-Depth Deflectometer(MDD). It was found that errors between the given and backcalculated moduli in numerical analysis were less than 0.32% for several numerical models tested. When impact loads were used, a technique to determine the depth to virtual rigid base was proposed through the analysis of compressive wave velocity and impulse loading durations. It was found that errors between the given and backcalculated moduli in numerical analysis were less than 0.114% when virtual rigid base was considered in numerical analysis. The pavement behavior must be evaluated under various vehicle speeds when determining the dynamic interaction between the loading vehicle and pavement system. To evaluate the dynamic behavior on asphalt concrete pavement under various vehicle speeds, truck moving tests were carried out. From the test results with respect to vehicle speed, it was found that the vehicle speed had significant effect on actual response of the pavement system. The lower vehicle speed generates the higher interior deflections, and the lower dynamic modulus.

  • PDF

Development and Evaluation of Accelerated Reflection Cracking Test System in Shear Mode (전단 반사균열 모사 실험방법 개발 및 적용성 연구)

  • Kim, Kwang-Woo;Yim, Sung-Bin;Doh, Young-Soo;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.1 no.1
    • /
    • pp.97-106
    • /
    • 1999
  • This study was conducted to develop a test system for evaluating resistance against reflection cracking in shear mode caused by wheel load in asphalt concrete overlaid on the deteriorated cement concrete pavement. Reflection cracking resistance of selected polymer modified asphalt(PMA) mixtures with and without reinforcement was evaluated using this test system. It was shown that the test results accounted for the effectiveness of materials and reinforcement characteristics in terms of the difference in the resistance against reflection cracking. A shear failure life of a certain mixture was estimated with a high coefficient of determination. when the test results were used in a well known prediction model. Therefore, it seemed to be possible to use this technique for predicting a relative service life of on overlay.

  • PDF

Assessment of recycled concrete aggregates as a pavement material

  • Jayakody, Shiran;Gallage, Chaminda;Kumar, Arun
    • Geomechanics and Engineering
    • /
    • v.6 no.3
    • /
    • pp.235-248
    • /
    • 2014
  • Population increase and economic developments can lead to construction as well as demolition of infrastructures such as buildings, bridges, roads, etc resulting in used concrete as a primary waste product. Recycling of waste concrete to obtain the recycled concrete aggregates (RCA) for base and/or sub-base materials in road construction is a foremost application to be promoted to gain economical and sustainability benefits. As the mortar, bricks, glass and reclaimed asphalt pavement (RAP) present as constituents in RCA, it exhibits inconsistent properties and performance. In this study, six different types of RCA samples were subjected classification tests such as particle size distribution, plasticity, compaction test, unconfined compressive strength (UCS) and California bearing ratio (CBR) tests. Results were compared with those of the standard road materials used in Queensland, Australia. It was found that material type 'RM1-100/RM3-0' and 'RM1-80/RM3-20' samples are in the margin of the minimum required specifications of base materials used for high volume unbound granular roads while others are lower than that the minimum requirement.

A Study on the Estimation of Fatigue Life for Asphalt Pavement (아스팔트 포장(鋪裝)의 피로수명예측(疲勞壽命豫測)에 관한 연구(研究))

  • Seo, Chae Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.43-51
    • /
    • 1983
  • The fatigue failure envelopes for the prediction of the fatigue life of asphalt pavements were obtained from the results of laboratory fatigue test for asphalt mixture. The envelopes did not depend on the experimental temperature and the number of loading, and varied with the types of asphalts. In the case of dense graded asphalt concrete, the envelopes formed a single curve regardless of the penetration of the asphalt. On the other hand, the method for the fatigue life prediction was presented based on the envelopes obtained and the triple layered elastic theory developed by Burmister.

  • PDF

Evaluation of Adhesion Characteristics of Crack Sealants Used in Asphalt Concrete Pavement (아스팔트 콘크리트 포장용 균열실링재의 부착특성 평가)

  • Lee, Jae-Jun;Kim, Seung-Hoon;Baek, Jong-Eun;Lim, Jae-Kyu;Kim, Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • Cracking is an inevitable fact of asphalt concrete pavements and plays a major role in pavement deterioration. Pavement cracking is one of the main factors determining the frequency and method of repair. Cracks can be treated with a number of preventative maintenance actions, including overlay surface treatments such as slurry sealing, crack sealing, or crack filling. Pavement cracks can show up as one or all of the following types: transverse, longitudinal, fatigue, block, reflective, edge, and slippage. Crack sealing is a frequently used pavement maintenance treatment because it significantly extends the pavement service life. However, crack sealant often fails prematurely due to a loss of adhesion. Because current test methods are mostly empirical and only provide a qualitative measure of the bond strength, they cannot accurately predict the adhesive failure of the sealant. This study introduces a laboratory test aimed at assessing the bonding of hot-poured crack sealant to the walls of pavement cracks. A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the bonding strength of the hot-poured crack sealant as a function of the curing time and temperature. Based on a limited number of test results, the hot-poured crack sealants have very different bonding performances. Therefore, this test method can be proposed as part of a newly developed performance-based standard specification for hot-poured crack sealants for use in the future. PURPOSES : The purpose of this study was to evaluate both the adhesion and failure performance of a crack sealant as a function of its curing time and curing temperature. METHODS: A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the adhesion performance of a crack sealant as a function of the curing time and curing temperature. RESULTS: With changes in the curing time, curing temperature, and sealant type, the bond strengths were found to be significantly different. Also, higher bond strengths were measured at lower temperatures. Different sealant types produced completely different bond strengths and failure behaviors. CONCLUSIONS: The bonding strength of an evaluated crack sealant was shown to differ depending on various factors. Two sealant types, which were composed of different raw materials, were shown to perform differently. The newly proposed test offers the possibility of evaluating and differentiating between different crack sealants. Based on alimited number of test results, this test method can be proposed as part of a newly developed performance-based standard specification for crack sealants or as part of a guideline for the selection of hot-poured crack sealant in the future.

Effects of retarder on manufacturing Aggregate Exposed Concrete (골재노출 콘크리트의 지연제 효과에 대한 검토)

  • 문한영;하상욱;양은철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.647-650
    • /
    • 2001
  • The traffic noise from automobiles have been causing so serious problems in urban areas that the study and solutions to reduce noise and air pollution have been required. In general, Portland cement concrete(PCC) pavements have the advantage of durability and superior surface friction when compared to most dense-graded asphalt. However, data collected to date generally show PCC pavements to create more noise than asphaltic surfaces. Therefore, recent research has shown some new concrete pavement textures to be worth further examination. Exposed Aggregate Pavements have also been evaluated for noise impacts. This PCC surface is accomplished by brushing the surface of the plastic concrete to expose the aggregate, increasing the macro texture. In this study, in order to manufacture Aggregate Exposed Concrete for low noise pavements, we considered the effects of retarder agents according to dosage and curing conditions. So we tried to find out relationship between textures of surface and effects of retarder.

  • PDF