본 논문에서는 아시아 컨테이너항만들 간의 클러스터링 추세를 분석하기 위해서 자기조직화지도 신경망 모형과 Tier모형에 대해서 이론적으로 설명하고, 아시아 38개 컨테이너항만들의 11 년간 자료를 4개의 투입요소(선석길이, 수심, 총면적, 크레인 수), 1개의 산출요소(컨테이너화물처리량)를 이용하여 국내항만(부산, 인천, 광양항)들이 어떤 항만들과 클러스터링 해야만 하는지에 대한 측정방법을 실증적으로 보여 주고 분석하였다. 실증분석의 주요한 결과는 다음과 같다. 첫째, 자기조직화지도 신경망모형에 의한 클러스터링 추세분석에서 국내항만들은 클러스터링을 통해서 효율성을 증대[부산항(26.5%), 인천항(13.05%), 광양항(22.95%)]시 킬 수 있는 것으로 나타났다. 둘째, Tier모형을 이용한 클러스터링분석에서는 부산항(홍콩, 상해, 마닐라, 싱가포르항), 인천항(아덴, 닝보, 다바오, 방콕항), 광양항(아덴, 닝보, 방콕, 하이파, 두바이, 광저우항)과 각각 클러스터링을 해야만 하는 것으로 나타났다. 셋째, 자기조직화지도 신경망 모형에 Tier모형을 접목시킨 모형에서는 (1) 부산항은 인천항과 광양항에 비해서 효율성이 더 개선되었다. (2) 인천항은 2001년부터 2007년까지는 효율성이 더디게 개선되었으나, 2008년 이후에는 더욱 개선되었다. (3) 광양항은 2001년부터 2003년까지는 개선도가 높았으나, 2004년 이후 부터는 지속적으로 개선도가 하락하였다. 본 논문이 갖는 정책적인 함의는 첫째, 항만정책입안자들이 본 연구에서 사용한 두 가지 모형과 접목시킨 모형을 항만의 클러스터링 정책에 도입하여 해당항만이 발전할 수 있는 전략을 수립하고 이행해 나가야만 한다는 점이다. 둘째, 본 논문의 실증분석결과 국내항만들의 참조항만, 클러스터링항만들로서 나타난 아시아항만들에 대하여, 그들 항만들의 항만개발, 운영에 대한 내용을 정밀하게 분석하고 도입하여 실시하는 것이 필요하다.