• Title/Summary/Keyword: Asian dust outbreaks

Search Result 2, Processing Time 0.015 seconds

Characteristics of Meteorological Conditions Relevant to Asian Dust Outbreaks During Spring Months of 1998-2002 (1998~2002년 봄철 황사 발생과 관련된 기상조건 특성 분석)

  • Song, Sang-Keun;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.399-407
    • /
    • 2007
  • The characteristics of meteorological conditions relevant to Asian dust (AD) outbreaks and their occurrence frequencies were analyzed in four source regions (R1 to R4) during spring months (March to May) of 1995-2002. Moreover, the concentration variations of AD (e.g., $PM_{10}$) observed in Korea were investigated during the study period. In the relationship between AD outbreaks and three meteorological parameters (i.e., air temperature, wind speed, and aridity), the largest AD outbreaks in April (${\sim}250$ observations) mostly occurred in R2 when air temperature ranging from 10.0 to $15^{\circ}C$ and surface wind speed from 7 to $9m\;s^{-1}$ were recorded. Moreover, the aridity ($\geq4$) in April was significantly high in R2 with the maximum frequency of AD outbreaks (i.e., 206 observations). On the other hand, the number (percentage) of days belonging to AD events observed in five Korean cities were found to be 116 (44%), 121 (46%), and 26 days (10%) in March, April, and May, respectively. The mean $PM_{10}$ concentrations were found to range from 150 to 220, 150 to 200, and 95 to $120{\mu}g\;m^{-3}$ in March, April, and May, respectively. Consequently, this implied that the AD events in Korea were found to be gradually frequent in early spring and to be affected from the large AD outbreaks observed in the source regions.

An Effectiveness of Simultaneous Measurement of PM10, PM2.5, and PM1.0 Concentrations in Asian Dust and Haze Monitoring

  • Cho, Changbum;Park, Gilun;Kim, Baekjo
    • Journal of Environmental Science International
    • /
    • v.22 no.6
    • /
    • pp.651-666
    • /
    • 2013
  • This study introduces a novel approach to the differentiation of two phenomena, Asian Dust and haze, which are extremely difficult to distinguish based solely on comparisons of PM10 concentration, through use of the Optical Particle Counter (OPC), which simultaneously generates PM10, PM2.5 and PM1.0 concentration. In the case of Asian Dust, PM10 concentration rose to the exclusion of PM2.5 and PM1.0 concentration. The relative ratios of PM2.5 and PM1.0 concentration versus PM10 concentration were below 40%, which is consistent with the conclusion that Asian Dust, as a prime example of the coarse-particle phenomenon, only impacts PM10 concentration, not PM2.5 and PM1.0 concentration. In contrast, PM10, PM2.5 and PM1.0 concentration simultaneously increased with haze. The relative ratios of PM2.5 and PM1.0 concentration versus PM10 concentration were generally above 70%. In this case, PM1.0 concentration varies because a haze event consists of secondary aerosol in the fine-mode, and the relative ratios of PM10 and PM2.5 concentration remain intact as these values already subsume PM1.0 concentration. The sequential shift of the peaks in PM10, PM2.5 and PM1.0 concentrations also serve to individually track the transport of coarse-mode versus fine-mode aerosols. The distinction in the relative ratios of PM2.5 and PM1.0 concentration versus PM10 concentration in an Asian Dust versus a haze event, when collected on a national or global scale using OPC monitoring networks, provides realistic information on outbreaks and transport of Asian Dust and haze.