• Title/Summary/Keyword: Ash Powder

Search Result 683, Processing Time 0.059 seconds

Flowability of High Flowable Concrete with Fly Ash and Lime Powder (플라이 애시와 석회석 미분말을 혼용한 고유동 콘크리트의 유동 특성)

  • Cho Il-Ho;Sung Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.23-30
    • /
    • 2006
  • This study is performed to evaluate flowability of high flowable concrete using ordinary portland cement, crushed coarse aggregate, crushed sand, sea sand, fly ash, lime powder and superplasticizer. The slump flow and air content are increased with increasing the content of lime powder. But, the O-type funneling time and Box-type passing are decreased with increasing the content of lime powder. The slump flow, air content, O-type funneling time, Box-type passing and L-type filling of target compressive strength 21-27 MPa and 35-42 MPa at curing age 28 days are 47-50 cm and 56-60 cm, 4.2-5.5% and 4.0-5.7%, 8-12s and 5-10s, 4.3-5.0 cm and 3.4-5.0 cm, and excellent, respectively. These concrete can be used for high flowable concrete.

뽕잎강정의 일반성분, 무기질 함량 및 Texture 특성에 관한 연구

  • 여정숙;김애정
    • Culinary science and hospitality research
    • /
    • v.7 no.1
    • /
    • pp.135-145
    • /
    • 2001
  • This study was undertaken to analyze chemical composition, minerals and texture characteristics of Pongnipgangjung in various volumes of adding Pongnip powder. With increasing Pongnip powder level, moisture, total nitrogen, crude protein, crude fat and crude ash contents were significantly increased. Ca, P, K and Mg contents of Pongnip powder 1%, 3%, 4% was higher than Pongnip flour free group. According to rheometer evaluatuion, Pongnipgangjung added Pongnip powder 1% showed higher level of hardness than Pongnip powder 3%, 4% and free group. In sensory evaluation, the results of preference are in the following order Pongnipgangjung added Pongnip powder 1%, 3%, 4% and free group.

  • PDF

Steel - concrete bond potentials in self-compacting concrete mixes incorporating dolomite powder

  • Kamal, Mounir M.;Safan, Mohamed A.;Al-Gazzar, Mohamed A.
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.273-288
    • /
    • 2013
  • The main objective of this research was to evaluate the potentials of self-compacting concrete (SCC) mixes to develop bond strength. The investigated mixes incorporated relatively high contents of dolomite powder replacing Portland cement. Either silica fume or fly ash was used along with the dolomite powder in some mixes. Seven mixes were proportioned and cast without vibration in long beams with 10 mm and 16 mm steel dowels fixed vertically along the flowing path. The beams were then broken into discrete test specimens. A push-put configuration was adopted for conducting the bond test. The variation of the ultimate bond strength along the flowing path for the different mixes was evaluated. The steel-concrete bond adequacy was evaluated based on normalized bond strength. The results showed that the bond strength was reduced due to Portland cement replacement with dolomite powder. The addition of either silica fume or fly ash positively hindered further degradation as the dolomite powder content increased. However, all SCC mixes containing up to 30% dolomite powder still yielded bond strengths that were adequate for design purpose. The test results demonstrated inconsistent normalized bond strength in the case of the larger diameter compared to the smaller one.

Shell Powder Coating on the Surface of Concrete by Geopolymer Cement (지오폴리머 시멘트를 이용한 콘크리트 표면의 패각 분말 코팅)

  • Kim, Gab-Joong;Han, Hyun-Geun;Seo, Dong-Seok;Lee, Jong-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Geopolymer materials are attractive as inorganic binders due to their superior mechanical and eco-friendly properties. In the current study, geopolymer-based cement was prepared using aluminosilicate minerals from fly-ash with KOH as an alkaline-activator and $Na_2SiO_3$ as liquid glass. Then, calcium carbonate powder from a clam shell was mixed with the geopolymer and the mixture was coated on a concrete surface to provide points of attachment for environmental organisms to grow on the geopolymers. We investigated the effect of the shell powder grain size on the microstructure and bonding property of the geopolymers. A homogeneous geopolymer layer coated well on the concrete surface via aluminosilicate bonding, but the adhesiveness of the shell powder on the geopolymer cement was dependent on the grain size of the shell powder. Superior adhesive characteristics were shown in the shell powder of large grain size due to the deep penetration into the geopolymer by their large weight. This kind of coating can be applied to the adhesiveness of eco-materials on the surface of seaside or riverside blocks.

Development of Product System on Artificial Aggregate using of Paper Sludge Ash (제지 슬럿지 소각회를 이용한 인공골재 생산공정개발)

  • 백명종;박칠림;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.69-75
    • /
    • 1997
  • This studies regarding deveolpment of product system on artificial aggregate using of Paper Sludge Ash that waste production at paper-making mill. Expecially this paper discribes development of product system using centrifugal mixer plant. The skills of this product system on artificial aggregate using of Ash can be spread Fly-Ash, powder and fine aggregate (under 5mm) of waste concrete reuse.

  • PDF

A Study on the Quality Properties of Exposed High Fluidity Concrete using Fly Ash and Limestone Powder (플라이애시 및 석회석 미분말을 사용한 고유동 노출 콘크리트의 품질특성에 관한 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Kim, Ji-Hoon;Kim, Kyung-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.67-75
    • /
    • 2013
  • Recently, the interest is increasing about the exposed concrete, accordingly, exposed concrete is expanding the use. However, concrete structures is difficult to apply the general concrete for exposed concrete, due to complex section and compact reinforcement, increasingly. Therefore, in this paper, for application of high fluidity concrete as exposed concrete, exposed high fluidity concrete using fly ash and lime stone powder was manufactured and observed quality property(fluidity properties, mechanical properties and Surface Properties) of exposed high fluidity concrete. The experiments are based on the OPC and LSP10, was evaluated Impact on the quality of concrete according to mixing ratio of FA(0, 10, 15 and 20). As a result, fluidity properties, mechanical properties and Surface Properties of exposed high fluidity concrete were satisfied to requirement conditions, fluidity and surface finishability was improved depending on mix of fly ash and limestone powder. Through this, we utilize of basic research data for development of high fluidity concrete for exposed concrete.

A Study on Hydration Properties of Recycled Cement Mortar using Admixture Materials (혼화재료를 혼입한 재생시멘트 모르터의 수화특성에 관한 연구)

  • Park, Cha-Won;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.79-86
    • /
    • 2004
  • The purpose of this study was the development of a recycling process to recover the hydraulic properties of hydration products which account for a large proportion of cementitious powder from concrete waste. This process was performed to recycle cementitious powder as recycle cement. Therefore, after the theoretical consideration of the properties of recycle process of recycled aggregates and cementitious powder, we investigated the hydraulic properties of cementitious powder under various temperature conditions in hardened mortar which was modeled on concrete waste. And we analyzed properties of chemical reactions of recycled cement with admixture materials such as Fly-Ash, Blast Furnace Slag As a result of the experiment, the most effective method to recover hydraulic properties of the cementitious powder from concrete waste was condition of burning at 700℃ for 120 minute. And it is shown that the fluidity of mortar was decreased rapidly when the burning temperature of recycle cement was increased. However, the compressive strength and fluidity were improved significantly when admixture materials such as Fly-Ash or Blast Furnace Slag was added.

Antioxidant Activity of Peanut Flours with Germination and Roasting (볶음 및 발아처리한 땅콩분말의 항산화 활성)

  • Lee, Youn Ri
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.2
    • /
    • pp.155-159
    • /
    • 2019
  • The purpose of this study was to evaluate the antioxidant activity of roasted and germinated peanut flours. This study also aims to utilize it as a functional material to be applied to processed foods. The moisture, crude protein, crude fat and ash carbohydrate contents of the common peanut powder used in this study were 1.27, 25.63, 42.19, 2.38, 28.20 g / 100 g, respectively. The moisture content, crude protein, crude fat and ash carbohydrate in germinated peanut powder were 1.47, 25.86, 42.86, 2.25 and 26.66 g / 100 g, respectively. 26.52, 45.02, 2.33, 24.70, g / 100 g, and the dietary fiber content of peanut, roasted peanut and germinated peanut powder was 12.27, 13.05 and 14.22 g / 100g, respectively. The antioxidants and radical scavenging ability of polyphenols and flavonoids in peanut powder treated with germination and germination compared to ordinary peanuts. Resverasterol content was high in the germinated peanut powder. Especially, germinated peanut powder can act as a natural antioxidant.

Evaluation on the Characteristics of Weak Soil Adjacent to Chemical Compaction Pile of Using Bottom Ash (Bottom Ash를 활용한 Chemical Compaction Pile의 주변 지반 개량 특성 평가)

  • Kim, Sang-Chel;Park, Kyung-Tae;Sung, Ik-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.163-170
    • /
    • 2007
  • To evaluate on the applicability of Chemical Compaction Pile (CCP) method to weak soil improvement, two kinds of testing chambers were fabricated and the changes of water content and shear stress associated with soil types, ages and distances from the center of pile were measured with different mixing proportions of CCP such as bottom ash, lime powder and added admixture. As results of test, it was noted that water content and shear stress of ground are mainly affected by the amount of lime powder and increase of the amount corresponds to rapid improvement of soil. And the improvement depended greatly on the types of soil also. It was finally found that CCP developed can be applicable to bearing pile as well as soil improvement since CCP has a bearing capacity enough to carry loads.

Shrinkage and Creep of Recycled Aggregate Concrete Using Pozzolanic Materials (포졸란 재료를 사용한 재생골재 콘크리트의 건조수축 및 크리프)

  • 문대중;임남웅;김양배
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.637-642
    • /
    • 2002
  • In this study, the experiments of recycled aggregate concrete with fly ash and special blended slag powder or diatom calcined at 650$\circ$ were performed on compressive strength, shrinkage and creep. The compressive strength of concrete with recycled aggregate and pozzolanic materials were higher than that of concrete with crushed stone and OPC. On the other hand, the shrinkage and creep of concrete with recycled aggregate and pozzolanic materials was smaller than that of concrete with crushed stone and OPC. Futhermore, the shrinkage and creep of recycled aggregate concrete with fly ash and special blended slag powder was a little decreased that of recycled aggregate concrete with fly ash and diatom. Relationship between compressive strength and creep coefficient was shown to the linear relation like as $\sigma$$_{c}$= -30CF+404.4.

  • PDF