• Title/Summary/Keyword: Ascorbate

Search Result 430, Processing Time 0.022 seconds

Responses of Transgenic Tobacco Plants Overexpressing Superoxide Dismutase and Ascorbate Peroxidase in Chloroplasts to Water Stress (Superoxide Dismutase와 Ascorbate Peroxidase를 엽록체에 과발현하는 형질전환 담배의 수분스트레스에 대한 반응)

  • 최선미;권석윤;곽상수;박용목
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.79-84
    • /
    • 2001
  • To assess resistance of transgenic tobacco plants which overexpress superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts to water stress, changes in leaf water potential, turgor potential, stomatal conductance and transpiration rate were measured. Leaf water potential in all plants remained high up to day 4 after withholding water but thereafter decreased markedly. In spite of a remarkable decrease in leaf water potential, some of transgenic plants maintained higher turgor potential compared with control plant on day 12. In particular, the transgenic plant expressing MnSOD showed an outstanding maintenance in turgor pressure by osmotic adjustment throughout the experiment, resulting in high stomatal conductance and transpiration rate. However, among transgenic plants, osmotic potential was reduced more effectively in multiple transformants such as the double transformant expressing both MnSOD and APX, and the triple transformant expressing CuznSOD, MnSOD and APX than single transformants. Consequently, further research is needed to get general agreement on the tolerance of transgenic plants to water stress at different growth stages for each transgenic plant.

  • PDF

Photochemical Response in 0-Year-Old and 1-Year-Old Needles of Picea glehnii during Cold Acclimation and Low Temperature

  • Bae, Jeong-Jin;Hara, Toshihiko;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.31 no.4
    • /
    • pp.317-325
    • /
    • 2008
  • P. glehnii, an evergreen conifer found in northern areas, is known as a cold-resistant species. In this experiment, we measured the water content, PSⅡ efficiency, chlorophyll fluorescence, pigments of the xanthophyll-cycle and activity of enzymes of the ascorbate-glutathione cycle during cold acclimation and at subsequent low-temperature conditions to examine the importance of acclimation to cold tolerance. P. glehnii showed a decrease in PSⅡ efficiency (especially in Fv) during cold acclimation and at subsequent low temperatures. However, cold-acclimated needles showed higher PSⅡ efficiency at low temperatures than nonacclimated needles. In addition, 0-YON (first-year needles) showed an increase in $\beta$-carotene and lutein, while 1-YON (one-year-old needles) immediately developed an antioxidant mechanism in the ascorbate-gluthathione cycle as soon as they were exposed to low temperature and both 0-YON and 1-YON showed increased zeaxanthin and de-epoxidation ratios at continuous low temperature. Based on our results, we suggest that P. glehnii maintain PSⅡ efficiency at low temperature by effectively protecting the photosynthetic apparatus from photo-damage by rapid induction of an antioxidant mechanism in 1-YON and dissipation of excess energy by $\beta$-carotene and lutein in 0-YON.

Seasonal and Diurnal Changes of Antioxidant Enzymes in Four Subtropical Plant Species (아열대성 식물 4종의 항산화효소 활성과 Isoenzyme의 계절적.일주기적 변화)

  • 오순자;고석찬
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11b
    • /
    • pp.67-67
    • /
    • 2002
  • 아열대성 식물 4종 (문주란, Crinum asiaticum var. japonicum; 박달목서, Osmanthus insularis; 죽절초, Chloranthus glaber; 파초일엽, Asplenium antiquum)을 대상으로 자연 환경요인의 변화에 의한 항산화 효소 (superoxide dismutase, peroxidase, catalase, ascorbate peroxidase)의 활성과 isoenzyme 패턴의 변화를 전기영동으로 조사하였다. 그 결과, peroxidase의 활성과 isoenzyme 패턴이 식물종이나 환경조건에 따라 가장 다양하게 나타났다. Peroxidase는 4종 모두에서 여름철보다 겨울철에 활성이 높았고 문주란, 박달목서, 파초일엽에서는 겨울철에 특이적으로 발현되는 isoenzyme들도 관찰할 수 있었다. Catalase는 문주란, 박달목서, 파초일엽에서 검출되었다. 문주란 잎에서는 겨울철에 비해 여름철에 다소 높은 활성을 보였으며, 박달목서와 파초일엽에서는 겨울철에 높은 활성을 나타내었다. 그리고 문주란과 박달목서에서는 겨울철에 새벽이나 밤보다 낮시간에 높은 활성을 보였는데 파초일엽에서는 낮시간의 catalase 활성이 낮았다. Superoxide dismutase는 문주란, 박달목서, 파초일엽에서 검출되었으며, 특히 박달목서에서는 겨울철에 높은 활성을 보였다. Ascorbate peroxidase는 문주란과 파초일엽에서 관찰되었으나 계절적으로 큰 차이가 없었으며, 겨울철에는 isoenzyme 패턴의 일주기적 변화가 관찰되었다. 이상의 결과, 종별로는 문주란, 파초일엽에서 4종의 항산화효소가 모두 검출되었고, 박달목서에서는 ascorbate peroxidase가, 죽절초에서는 peroxidase를 제외한 모든 항산화 효소가 검출되지 않았다. 식물종에 따라 또는 환경요인의 변화에 따라 항산화효소의 활성 또는 isoenzyme 패턴의 차이를 보이고 있지만 항산화효소의 계절적 그리고 일주기적 변화가 관찰되어, 본 연구에서 조사된 4종의 아열대성 식물이 자연환경 조건 하에서도 산화적 스트레스에 처하고 있는 것으로 보인다.

  • PDF

Effect of Cytochrome c on Pork Fat Oxidation Measured by TBA Test (Cytochrome c가 돼지지방산화에 미치는 영향)

  • Lee, Moo-Ha;Cassens, R.G.
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.50-53
    • /
    • 1987
  • The effect of cytochrome on pork fat oxidation was studied either in the absence or in the presence of nitrite and/or ascorbate. Results showed that the back-fat oxidation measured by TBA test increased with increasing concentration of cytochrome c but the Increment decreased with increasing concentration. The addition of ascorbate alone to cytochrome c did not prevent the oxidation. The same result was obtained with the addition of nitrite alone to cytochrome c. However, the backfat oxidation was pretented by the addition of nitrite and ascorbate together With the rendered fat, the trends were more obvious than with backpat.

  • PDF

Inhibition of Adventitious Root Growth in Boron-Deficient or Aluminum-Stressed Sunflower Cuttings

  • Hong, Jung-Hee;Go, Eun-Jung;Kim, Tae-Yun
    • Journal of Environmental Science International
    • /
    • v.12 no.11
    • /
    • pp.1189-1196
    • /
    • 2003
  • The effect of boron and aluminum on the development of adventitious roots was studied in sunflower cuttings. Three-day-old seedlings were de-rooted and grown in nutrient solutions with or without boron and supplemented with different concentrations (from 50 to 700 ${\mu}$M) of aluminum. The number and length of the adventitious roots and proline content in adventitious roots in response to insufficient boron and aluminum stress were determined periodically. The micronutrient boron caused the development of numerous roots in the lower parts of the hypocotyl. A dose-response of boron-induced rooting yielded an optimum concentration of 0.1 mM boron. In the absence of boron, in the majority of the adventitious roots, a significant inhibition was observed with or without aluminum, indicating that the most apparent symptom of boron deficiency is the cessation of root growth. Increasing concentrations of aluminum caused progressive inhibition of growth and rooting of the hypocotyls, and a parallel increase in proline levels of adventitious roots. Supplemental boron ameliorated the inhibitory effect of aluminum, suggesting that aluminum could inhibit root growth by inducing boron deficiency. Ascorbate added to medium in the absence of boron improved root growth and induced a significant decrease in proline levels. These findings suggest that adventitious root growth inhibition resulting from either boron deficiency or aluminum toxicity may be a result of impaired ascorbate metabolism.

Effect of Allopurinol on the Ethanol-induced Oxidative Stress : Mechanism of Allopurinol Action

  • Park, Min-Kyung
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.1
    • /
    • pp.48-55
    • /
    • 1998
  • An acute ethanol load(50mmol/kg , i.p) resulted in an increase in peroxidation and a decrease in the levels of $\alpha$-tocopherol and ascorbate in rat cerebellum. Pretreatement with allopurinol(146$\mu$mol/kg, i.p) prevented the ethnol-induced increment in lipid peroxidation and decrease in $\alpha$-tocopherol content. However, the decrease of ascorbate was of greater magnitude when allopurinol was associated with ethanol. These results suggested that allopurinol. besides its action as a radical scavenger and xanthine oxidase inhibitor, might favor the regeneration of $\alpha$-tocopherol antioxidant acitviity was studied using ${\gamma}$-radiolysis in aerated ethanolic solutions. Even though allopurinol did not react by itself with $\alpha$-hydroxyethyl-peroxyl radicals [H3C-CH(OH)OO] , it enhance the $\alpha$-hydroxyethyl-peroxyl radical scavenging properties of $\alpha$tocopherol. The regeneration of $\alpha$-tocopherol from the $\alpha$-hydroxyethyl-peroxyl radical scavenging properties of $\alpha$-tocophero. The regeneration of $\alpha$-tocopherol from the $\alpha$-tocopherol radical by ascorbate remained as efficient in the presence of allopurinol as in its absence. The effects of allopurinol on the Vitamin E oxidation-reduction mechanism could be involoved in the beneficial effectof allopurinol on the biological cellular damages linked to free radical reactions.

  • PDF

Development of Environmental Stress-Tolerant Plants by Gene Manipulation of Antioxidant Enzymes

  • Kwon, Suk-Yoon;Lee, Haeng-Soon;Kwak, Sang-Soo
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.88-93
    • /
    • 2001
  • Oxidative stress is one of the major limiting factor in plant productivity. Reactive oxygens species (ROS) generated during metabolic processes damage cellular functions and consequently lead to disease, senescence and cell death. Plants have evolved an efficient defense system by which the ROS is scavenged by antioxidant enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX). Attempts to reduce oxidative damages under the stress conditions have included the manipulation of 갠 scavenging enzymes by gene transfer technology. Increased SOD activities of transgenic plants lead to increased resistance against oxidative stresses derived from methyl viologen (MV), and from photooxidative damage caused by high light and low temperature. Transgenic tobacco plants overexpressing APX showed reduced damage following either MV treatment of photooxidative treatment. Overexpression of glutathion reductase (GR) leads to increase in pool of ascorbate and GSH, known as small antioxidant molecules. These results indicate through overexpression of enzymes involved in ROS-scavenging could maintain or improve the plant productivities under environment stress condition. In this study, the rational approaches to develop stress-tolerant plants by gene manipulation of antioxidant enzymes will be introduced to provide solutions for the global food and environmental problems in the $21^\textrm{st}$ century.

  • PDF

Effect of Plant Growth Regulators on Minimizing Ozone Injury in Tobacco(Nicotiana tabacum L.) (식물생장조절제(植物生長調節劑) 처리(處理)가 담배의 오존 피해경감(被害輕減)에 미치는 영향(影響))

  • Park, K.S.;Cho, J.H.;Sohn, J.K.;Lee, S.C.
    • Korean Journal of Weed Science
    • /
    • v.18 no.1
    • /
    • pp.54-62
    • /
    • 1998
  • This experiment was conducted to find out the effects of ABA and IAA on activities of antioxidant enzymes, antioxidant content, and growth of tobacco under exposure to ozone. The exposure to ozone in tobacco plant significantly decreased plant height, but it did not show any difference in vegetative characteristics except plant height of IAA $10^{-3}$M treated. Total chlorophyll content of NC 82 was dramatically decreased with increase in days after ozone treatment. However, reduction of chlorophyll was minimized when plant growth regulators were treated before ozone exposure. Three days treament of ozone in tobacco increased ascorbic acid of oxidised form, while slightly decreased `in reduced ascorbic acid by IAA treatment. But seven days of ozone treatment showed increase in ascorbic acid and decrease in dehydroascorbic acid. Ozone treatment did not show any difference in glutathione content and glutathione reductase activity when plant growth regulators were treated. Activities of superoxide dismutase(SOD), ascorbate peroxidase(AP) and guaiacol peroxidase(GP) were increased by the exposure to ozone for three days. However, there were no difference in activities of SOD, AP and GP due to exposure to ozone for seven days. These reactions may be interpreted as protective responses to prevent or alleviate the damage of tobacco plant by ozone exposure.

  • PDF

Antioxidative Responses of Transgenic Tobacco Plants Expressing both Superoxide Dismutase and Ascorbate Peroxidase in Chloroplasts to Several Herbicides (Superoxide Dismutase와 Ascorbate Peroxidase가 엽록체내로 동시에 과대발현된 형질전환 담배의 제초제들에 대한 항산화 반응)

  • Kim Jin-Seog;Lee Byung-Hoi;Kwon Suk-Yoon;Kim Yun-Hee;Kim So-Hee;Cho Kwang-Yun
    • Journal of Plant Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.97-103
    • /
    • 2005
  • Antioxidative responses of transgenic tobacco plants expressing both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts was investigated with several herbicides. In greenhouse test, tolerance of SOD/APX-overexpressed tobacco (CA) to photosystem (PS) I inhibitor paraquat was increased by about 40%. However, any response differences between CA and wild type (WT) tobacco was not observed in a treatment with PS II inhibitors (bromoxynil, diuron and bromacil), chlorophyll biosynthesis inhibitor(oxyfluorfen), carotenoid biosynthesis inhibitor (fluridone) and 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase inhibitor (glyphosate). This tendency was also similar in the growth chamber test of low light intensity, using paraquat and diuron. That is, increased antioxidant activity of CA was shown only in paraquat treatment. When paraquat was foliar-treated to 6 to 9-leaf stage plant, the third to fourth placed leaf from shoot tip showed relatively higher antioxidant activity. Ascorbate supplemented to paraquat solution alleviated the phytotoxicity with a similar range in both CA and WT. In conclusion, CA specifically responded to oxidative stress induced by paraquat among tested herbicides in a whole plant assay.

Quality Characteristics of Chitosan-ascorbate Treated Kwamaegi Prepared by Vacuum Drying, and Lowering Effect of Serum Lipids in Rats Fed High Fat Diets (Chitosan-ascorbate 처리 감압건조 과메기의 품질특성과 고지방식이 흰쥐의 혈청지질에 미치는 영향)

  • Shin, Kyung-Ok;Oh, Seung-Hee;Kim, Sood-Dong
    • Food Science and Preservation
    • /
    • v.14 no.6
    • /
    • pp.669-675
    • /
    • 2007
  • Quality characteristics of Kwamaegi (semi-dried saury) prepared by treatment of chitosan-ascorbate (CA) and vacuum drying at $40{\sim}60^{\circ}C$(VDK), and the effect of the Kwamaegi on serum lipid profiles and anti-oxidation-related enzyme activity in rats fed high fat diets were investigated. The preparation periods were $4.5{\sim}8.3$ hr in VDK, while naturally dried Kwamaegi (NDK) took 360480 hr. Total microbe contents of VDK and NDK were $0.2{\sim}0.5$ and 8.2 log CFU/g, respectively. There was no significant difference in amino-nitrogen content. Compared with NDK, the acid and peroxide value, and fishy flavor of VDK40 (dried at $40^{\circ}C$) were significantly lower, and the texture, color and overall acceptability were higher. In animal experiments, weight gain, content of LDL-cholesterol and lipid peroxide, activities of total (T) and O type (O) xanthine oxidase, and the O/T ratio (%) were significantly lower in the VDK40 diet group than in the NDK diet group. The content of HDL-cholesterol in the VDK40 diet group was higher than in the NDK diet group. These results suggest that preparing CA-treated Kwamaegi with vacuum-drying at $40^{\circ}C$ can be applied throughout the year, and may shorten preparation time and improve its microbiological safety and nutritional values.