• 제목/요약/키워드: Ascomycota

검색결과 128건 처리시간 0.028초

Colletotrichum fructicola, a Member of Colletotrichum gloeosporioides sensu lato, is the Causal Agent of Anthracnose and Soft Rot in Avocado Fruits cv. "Hass"

  • Fuentes-Aragon, Dionicio;Juarez-Vazquez, Sandra Berenice;Vargas-Hernandez, Mateo;Silva-Rojas, Hilda Victoria
    • Mycobiology
    • /
    • 제46권2호
    • /
    • pp.92-100
    • /
    • 2018
  • The filamentous Ascomycota Colletotrichum gloeosporioides sensu lato is a fungus that has been reported worldwide as a causal agent of anthracnose disease in avocado and other crops. In Mexico, this species affects fruits from an early stage of development in the orchard until the post-harvest stage. Although fungicides are continuously applied to control Colletotrichum species, pericarp cankers and soft rot mesocarp in fruits are still frequently observed. Considering the lack of a precise description of the causative agent, the aim of the current study was to determine the pathogens involved in this symptomatology. Twenty-four isolates were consistently obtained from the pericarp of avocado fruits cv. "Hass" collected in the central avocado-producing area of Mexico. Morphological features such as colony growth, conidia size, and mycelial appressorium were assessed. Bayesian multilocus phylogenetic analyses were performed using amplified sequences of the internal transcribed spacer region of the nuclear ribosomal DNA; actin, chitin synthase, glyceraldehyde-3-phosphate dehydrogenase partial genes; and APn2-Mat1-2 intergenic spacer and mating type Mat1-2 partial gene from the nine selected isolates. In addition, fruits were inoculated with a conidial suspension and reproducible symptoms confirmed the presence of Colletotrichum fructicola in this area. This pathogenic species can now be added to those previously reported in the country, such as C. acutatum, C. boninense, C. godetiae, C. gloeosporioides, and C. karstii. Disease management programs to reduce the incidence of anthracnose should include C. fructicola to determine its response to fungicides that are routinely applied, considering that the appearance of new species is affecting the commercial quality of the fruits and shifting the original population structure.

Taxonomy and nomenclature of the Conjugatophyceae (= Zygnematophyceae)

  • Guiry, Michael D.
    • ALGAE
    • /
    • 제28권1호
    • /
    • pp.1-29
    • /
    • 2013
  • The conjugating algae, an almost exclusively freshwater and extraordinarily diverse group of streptophyte green algae, are referred to a class generally known as the Conjugatophyceae in Central Europe and the Zygnematophyceae elsewhere in the world. Conjugatophyceae is widely considered to be a descriptive name and Zygnematophyceae ('Zygnemophyceae') a typified name. However, both are typified names and Conjugatophyceae Engler ('Conjugatae') is the earlier name. Additionally, Zygnemophyceae Round is currently an invalid name and is validated here as Zygnematophyceae Round ex Guiry. The names of orders, families and genera for conjugating green algae are reviewed. For many years these algae were included in the 'Conjugatae', initially used as the equivalent of an order. The earliest use of the name Zygnematales appears to be by the American phycologist Charles Edwin Bessey (1845-1915), and it was he who first formally redistributed all conjugating algae from the 'Conjugatae' to the orders Zygnematales and the Desmidiales. The family Closteriaceae Bessey, currently encompassing Closterium and Spinoclosterium, is illegitimate as it was superfluous when first proposed, and its legitimization is herein proposed by nomenclatural conservation to facilitate use of the name. The genus Debarya Wittrock, 1872 is shown to be illegitimate as it is a later homonym of Debarya Schulzer, 1866 (Ascomycota), and the substitute genus name Transeauina Guiry is proposed together with appropriate combinations for 13 species currently assigned to the genus Debarya Wittrock. The relationships between Mougeotia, Mougeotiopsis, Mougeotiella, and Transeauina require further resolution, as do many of the other genera referred to the Conjugatophyceae. Type species are designated for genera for which no types were formally selected previously. The number of currently described species of conjugating green algae in AlgaeBase is about 3,500, comprising about 10% of all algal species, with about one third of species referred to the Zygnematales and two-thirds to the Desmidiales. A corresponding 10% of all algal names at the species level and below have been applied to conjugating algae, although a large proportion of these are at the infraspecific level.

A Note on the Lichen Genus Ramalina (Ramalinaceae, Ascomycota) in the Hengduan Mountains in China

  • Oh, Soon-Ok;Wang, Xin Yu;Wang, Li Song;Liu, Pei Gui;Hur, Jae-Seoun
    • Mycobiology
    • /
    • 제42권3호
    • /
    • pp.229-240
    • /
    • 2014
  • On the basis of extensive field investigation and a series of herbarium specimen identifications, we present and discuss the descriptions and distribution of 22 species of Ramalina found in the Hengduan Mountains of southwestern China. In this revisionary study, representatives of the Ramalina genus, including R. americana, R. confirmata, R. dendriscoides, R. obtusata, R. pacifica, R. pentecostii, R. peruviana, R. shinanoana, and R. subcomplanata are found for the first time in this area. In addition, R. holstii is reported for the first time China. Finally, a newly described species identified as Ramalina hengduanshanensis S. O. Oh & L. S. Wang is reported. It is characterized as growing from a narrow holdfast, solid, sparsely or richly and irregularly dichotomously branched, palmate and flattened lobes with distinctly dorsiventral appearance, surface rugose to reticulate, surface rugosely cracked, dense chondroid tissue, helmet shaped soralia at the tip. The species grows on rock and tree at the highest elevations in this area. Although very few lichen species belonging to the genus Ramalina have been collected above 4,000 m, this new species is found at this elevation. We present detailed morphological, anatomical, and chemical descriptions of this species along with molecular phylogenetic analysis of the internal transcribed spacer rDNA sequences.

Nigrospora Species Associated with Various Hosts from Shandong Peninsula, China

  • Hao, Yuanyuan;Aluthmuhandiram, Janith V.S.;Chethana, K.W. Thilini;Manawasinghe, Ishara S.;Li, Xinghong;Liu, Mei;Hyde, Kevin D.;Phillips, Alan J.L.;Zhang, Wei
    • Mycobiology
    • /
    • 제48권3호
    • /
    • pp.169-183
    • /
    • 2020
  • Nigrospora is a monophyletic genus belonging to Apiosporaceae. Species in this genus are phytopathogenic, endophytic, and saprobic on different hosts. In this study, leaf specimens with disease symptoms were collected from host plants from the Shandong Peninsula, China. The fungal taxa associated with these leaf spots were studied using morphology and phylogeny based on ITS, TEF1, and TUB2 gene regions. In this article, we report on the genus Nigrospora with N. gorlenkoana, N. oryzae, N. osmanthi, N. rubi, and N. sphaerica identified with 13 novel host associations including crops with economic importance such as bamboo and Chinese rose.

Arbuscular Mycorrhizal Fungal Communities in the Roots of Maize Lines Contrasting for Al Tolerance Grown in Limed and Non-Limed Brazilian Oxisoil

  • Gomes, Eliane A.;Oliveira, Christiane A.;Lana, Ubiraci G. P.;Noda, Roberto W.;Marriel, Ivanildo E.;de Souza, Francisco A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.978-987
    • /
    • 2015
  • Aluminum (Al) toxicity is one of the greatest limitations to agriculture in acid soils, particularly in tropical regions. Arbuscular mycorrhizal fungi (AMF) can supply plants with nutrients and give protection against Al toxicity. The aim of this work was to evaluate the effects of soil liming (i.e., reducing Al saturation) on the AMF community composition and structure in the roots of maize lines contrasting for Al tolerance. To this end, we constructed four 18S rDNA cloning libraries from L3 (Al tolerant) and L22 (Al sensitive) maize lines grown in limed and non-limed soils. A total of 790 clones were sequenced, 69% belonging to the Glomeromycota phylum. The remaining sequences were from Ascomycota, which were more prominent in the limed soil, mainly in the L3 line. The most abundant AM fungal clones were related to the family Glomeraceae represented by the genera uncultured Glomus followed by Rhizophagus and Funneliformis. However, the most abundant operational taxonomic units with 27% of the Glomeromycota clones was affiliated to genus Racocetra. This genus was present in all the four libraries, but it was predominant in the non-limed soils, suggesting that Racocetra is tolerant to Al toxicity. Similarly, Acaulospora and Rhizophagus were also present mostly in both lines in non-limed soils. The community richness of AMF in the non-limed soils was higher than the limed soil for both lines. The results suggest that the soil Al saturation was the parameter that mostly influences the AMF species composition in the soils in this study.

Survey on the distribution of Macrofungi in Mongolia

  • Nyamsuren, Kherlenchimeg;Magsar, Urgamal;Batsumber, Solongo;Myagmardorj, Tseveendari;Tsogtbaatar, Enkhsaikhan;Cho, Youngho;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • 제39권1호
    • /
    • pp.91-97
    • /
    • 2016
  • This paper reports the species of macromycetes collected in Mongolia: all the species are new to the area. Brief notes on taxonomy, ecology and distribution of the species are added. A total of 30 species of macromycetes were registered, 1 belonging to the division Ascomycota and 29 to the division Basidiomycota. It has been registered that 30 species belong to 25 genera, 17 families and occur in the flora fungus of Mongolia, until now. Specimen for 150 of samples macromycetes collected from June to August, 2015 in Tuv, Arkhangai and Huvsgul were enveloped. Macromycetes have been occured in 9 of 16 geographic regions. According to our studies 2 species in Khubsgul region, 2 species in Khangai region, 3 species in Khingan, 3 species in Dornod Mongol, 1 species in Khentei regions newly registered respectively. As a result of this work, determined 7 species (23%) of macromycetes in forest steppe and steppe regions and 23 species (77%) of them in forest region. The trophic structure for the fungal species is as follows: 2 species lignophite (7%), 4 species moss saprophyte (13%), 5 species soil saprophyte (17%), 15 species mycorrhiz (50%) of all species were respectively.

Diversity of Culturable Soil Micro-fungi along Altitudinal Gradients of Eastern Himalayas

  • Devi, Lamabam Sophiya;Khaund, Polashree;Nongkhlaw, Fenella M.W.;Joshi, S.R.
    • Mycobiology
    • /
    • 제40권3호
    • /
    • pp.151-158
    • /
    • 2012
  • Very few studies have addressed the phylogenetic diversity of fungi from Northeast India under the Eastern Himalayan range. In the present study, an attempt has been made to study the phylogenetic diversity of culturable soil fungi along the altitudinal gradients of eastern Himalayas. Soil samples from 24 m above sea level to 2,000 m above sea level altitudes of North-East India were collected to investigate soil micro-fungal community structure and diversity. Molecular characterization of the isolates was done by PCR amplification of 18S rDNA using universal primers. Phylogenetic analysis using BLAST revealed variation in the distribution and richness of different fungal biodiversity over a wide range of altitudes. A total of 107 isolates were characterized belonging to the phyla Ascomycota and Zygomycota, corresponding to seven orders (Eurotiales, Hypocreales, Calosphaeriales, Capnodiales, Pleosporales, Mucorales, and Mortierellales) and Incertae sedis. The characterized isolates were analysed for richness, evenness and diversity indices. Fungal diversity had significant correlation with soil physico-chemical parameters and the altitude. Eurotiales and Hypocreales were most diverse and abundant group of fungi along the entire altitudinal stretch. Species of Penicillium (D=1.44) and Aspergillus (D=1.288) were found to have highest diversity index followed by Talaromyces (D=1.26) and Fusarium (D=1.26). Fungal distribution showed negative correlation with altitude and soil moisture content. Soil temperature, pH, humidity and ambient temperature showed positive correlation with fungal distribution.

Roles of Forkhead-box Transcription Factors in Controlling Development, Pathogenicity, and Stress Response in Magnaporthe oryzae

  • Park, Jaejin;Kong, Sunghyung;Kim, Seryun;Kang, Seogchan;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제30권2호
    • /
    • pp.136-150
    • /
    • 2014
  • Although multiple transcription factors (TFs) have been characterized via mutagenesis to understand their roles in controlling pathogenicity and infection-related development in Magnaporthe oryzae, the causal agent of rice blast, if and how forkhead-box (FOX) TFs contribute to these processes remain to be characterized. Four putative FOX TF genes were identified in the genome of M. oryzae, and phylogenetic analysis suggested that two of them (MoFKH1 and MoHCM1) correspond to Ascomycota-specific members of the FOX TF family while the others (MoFOX1 and MoFOX2) are Pezizomycotina-specific members. Deletion of MoFKH1 (${\Delta}Mofkh1$) resulted in reduced mycelial growth and conidial germination, abnormal septation and stress response, and reduced virulence. Similarly, ${\Delta}Mohcm1$ exhibited reduced mycelial growth and conidial germination. Conidia of ${\Delta}Mofkh1$ and ${\Delta}Mohcm1$ were more sensitive to one or both of the cell cycle inhibitors hydroxyurea and benomyl, suggesting their role in cell cycle control. On the other hand, loss of MoFOX1 (${\Delta}Mofox1$) did not show any noticeable changes in development, pathogenicity, and stress response. Deletion of MoFOX2 was not successful even after repeated attempts. Taken together, these results suggested that MoFKH1 and MoHCM1 are important in fungal development and that MoFKH1 is further implicated in pathogenicity and stress response in M. oryzae.

Kretzschmaria quercicola sp. nov., an Undescribed Fungus from Living Oak in Mt. Daeryong, Korea

  • Yun, Ji Ho;Jo, Jong Won;Lee, Jin Heung;Han, Sang Kuk;Kim, Dae Ho;Lee, Jong Kyu
    • Mycobiology
    • /
    • 제44권2호
    • /
    • pp.112-116
    • /
    • 2016
  • We encountered an unfamiliar ascomycete fruiting body, fitting characteristics of the genus Kretzschmaria, which features in a stipitate ascigerous stroma with carbonaceous interior and disintegrating perithecia. In this study, we report and characterize a new species of the decaying fungus. Compared to other species, one of the notable features of this specimen (TPML150908-046) is its stromatal size (up to 15 cm). Although TPML150908-046 is morphologically similar to K. milleri and K. sandvicensis, it differs sharply from both species in apical ring size (TPML150908-046, $6.5{\sim}10.5{\mu}m$; K. milleri, $11{\sim}16{\mu}m$) and ascospore width (TPML150908-046, $10.5{\sim}17{\mu}m$; K. sandvicensis, $8.5~11.5{\mu}m$). Phylogenetic trees based on ${\beta}$-tubulin, ITS, and RPB2 sequences showed that our collection clustered with K. sandvicensis, with the respective similarities for these sequences being 95.6%, 91.3%, and 97.7%, signifying it as another species. With these results, we report it as a new species, which we call Kretzschmaria quercicola sp. nov.

일균일명 체계에 의한 국내 보고 Aspergillus, Penicillium, Talaromyces 속의 종 목록 정리 (Species List of Aspergillus, Penicillium and Talaromyces in Korea, Based on 'One Fungus One Name' System)

  • 김현정;김정선;천규호;김대호;석순자;홍승범
    • 한국균학회지
    • /
    • 제44권4호
    • /
    • pp.207-219
    • /
    • 2016
  • 인간의 삶에 큰 영향을 끼치는 Aspergillus, Penicillium 및 그들의 완전세대 속에 속하는 곰팡이의 국내 보고 종 목록을 작성하였다. 기존의 국가 생물종 목록집에는 Aspergillus 14종, Eurotium 4종, Neosartorya 8종, Penicillium 47종, Talaromyces 5종이 보고되었다. 본 논문에서는 국제조류 균류 식물명명규약(ICN)에 따른 일균일명 체계에 따라 Eurotium과 Neosartorya은 Aspergillus 속으로 합치고 Penicillium과 Talaromyces도 새로운 속 개념에 따라 정리하였다. 또한 기존의 국가 생물종 목록에 빠져 있던 77종을 추가하여 Aspergillus, Penicillium 및 그들의 완전세대에 속하는 곰팡이의 국내 보고 종 목록을 Aspergillus 55종, Penicillium 82종, Talaromyces 18종으로 정리하였다.