• Title/Summary/Keyword: Ascidian embryogenesis

Search Result 8, Processing Time 0.022 seconds

Mitochondria-Specific Monoclonal Antibodies in Eggs and Embryos of the Ascidian Halocynthia roretzi

  • Baek, Yong Han;Lee, Wang Jong;Kim, Gil Jung
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.467-473
    • /
    • 2017
  • Ascidian embryos have become an important model for embryological studies, offering a simple example for mechanisms of cytoplasmic components segregation. It is a well-known example that the asymmetric segregation of mitochondria into muscle lineage cells occurs during ascidian embryogenesis. However, it is still unclear which signaling pathway is involved in this process. To obtain molecular markers for studying mechanisms involved in the asymmetric distribution of mitochondria, we have produced monoclonal antibodies, Mito-1, Mito-2 and Mito-3, that specifically recognize mitochondria-rich cytoplasm in cells of the ascidian Halocynthia roretzi embryos. These antibodies stained cytoplasm like reticular structure in epidermis cells, except for nuclei, at the early tailbud stage. Similar pattern was observed in vital staining of mitochondria with DiOC2, a fluorescent probe of mitochondria. Immunostaining with these antibodies showed that mitochondria are evenly distributed in the animal hemisphere blastomeres at cleavage stages, whereas not in the vegetal hemisphere blastomeres. Mitochondria were transferred to the presumptive muscle and nerve cord lineage cells of the marginal zone in the vegetal hemisphere more than to the presumptive mesenchyme, notochord and endoderm lineage of the central zone. Therefore, it is suggested that these antibodies will be useful markers for studying mechanisms involved in the polarized distribution of mitochondria during ascidian embryogenesis.

The Ascidian Numb Gene Involves in the Formation of Neural Tissues

  • Ahn, Hong Ryul;Kim, Gil Jung
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.371-378
    • /
    • 2012
  • Notch signaling plays fundamental roles in various animal development. It has been suggested that Hr-Notch, a Notch homologue in the ascidian Halocynthia roretzi, is involved in the formation of peripheral neurons by suppressing the neural fates and promoting the epidermal differentiation. However, roles of Notch signaling remain controversial in the formation of nervous system in ascidian embryos. To precisely investigate functions of Notch signaling, we have isolated and characterized Hr-Numb, a Numb homologue which is a negative regulator of Notch signaling, in H. roretzi. Maternal expression of Hr-Numb mRNAs was detected in egg cytoplasm and the transcripts were inherited by the animal blastomeres. Its zygotic expression became evident by the early neurula stage and the transcripts were detected in dorsal neural precursor cells. Suppression of Hr-Numb function by an antisense morpholino oligonucleotide resulted in larvae with defect in brain vesicle and palps formation. Similar results have been obtained by overexpression of the constitutively activated Hr-Notch forms. Therefore, these results suggest that Hr-Numb is involved in Notch signaling during ascidian embryogenesis.

Expression of Hr-Erf Gene during Ascidian Embryogenesis

  • Kim, Jung Eun;Lee, Won Young;Kim, Gil Jung
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.389-397
    • /
    • 2013
  • FGF9/16/20 signaling pathway specify the developmental fates of notochord, mesenchyme, and neural cells in ascidian embryos. Although a conserved Ras/MEK/Erk/Ets pathway is known to be involved in this signaling, the detailed mechanisms of regulation of FGF signaling pathway have remained largely elusive. In this study, we have isolated Hr-Erf, an ascidian orthologue of vertebrate Erf, to elucidate interactions of transcription factors involved in FGF signaling of the ascidian embryo. The Hr-Erf cDNA encompassed 3110 nucleotides including sequence encoded a predicted polypeptide of 760 amino acids. The polypeptide had the Ets DNA-binding domain in its N-terminal region. In adult animals, Hr-Erf mRNA was predominantly detected in muscle, and at lower levels in ganglion, gills, gonad, hepatopancreas, and stomach by quantitative real-time PCR (QPCR) method. During embryogenesis, Hr-Erf mRNA was detected from eggs to early developmental stage embryos, whereas the transcript levels were decreased after neurula stage. Similar to the QPCR results, maternal transcripts of Hr-Erf was detected in the fertilized eggs by whole-mount in situ hybridization. Maternal mRNA of Hr-Erf was gradually lost from the neurula stage. Zygotic expression of Hr-Erf started in most blastomeres at the 8-cell stage. At gastrula stage, Hr-Erf was specifically expressed in the precursor cells of brain and mesenchyme. When MEK inhibitor was treated, embryos resulted in loss of Hr-Erf expression in mesenchyme cells, and in excess of Hr-Erf in a-line neural cells. These results suggest that zygotic Hr-Erf products are involved in specification of mesenchyme and neural cells.

Formation of Sensory Pigment Cells Requires Fibroblast Growth Factor Signaling during Ascidian Embryonic Development

  • Kim, Gil-Jung
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.221-225
    • /
    • 2003
  • The tadpole larva of the ascidian Halocynthia roretzi has two sensory pigment cells in its brain vesicle. To elucidate the temporal requirement for FGF signaling in formation of the pigment cells, embryos were treated with an FGF receptor 1 inhibitor, SU5402, or an MEK inhibitor, U0126 during various embryonic stages. In the present study, it is shown that the embryos treated with SU5402 from the 16-cell stage to the early gastrula stage do not form pigment cells, whereas those treated after the early gastrula stage form pigment cells. In pigment cell formation, embryos suddenly exhibited the sensitivity to SU5402 only for 1 h at the neural plate stage(-4 h after the beginning of gastrulation). When U0126 treatment was carried out at various stages between the 8-cell and late neurula stages, the embryos scarcely formed pigment cells. Pigment cell formation occurred when the embryos were placed in U0126 at early tail bud stage. These results indicate that FGF signaling is involved in pigment cell formation at two separate processes during ascidian embryogenesis, whereas more prolonged period is required for MEK signaling.

Mesodermal Formation and Patterning during Ascidian Embryogenesis (멍게 배발생 과정에서 중배엽 형성과 패턴화)

  • 김길중;니시다히로키
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.77-82
    • /
    • 2002
  • In ascidians, a primitive chordate, maternal cytoplasmic factors and inductive interactions are involved in the specification of cell fates in early embryos. The larval structure of ascidians is relatively simple, and the major mesodermal tissues of the tadpole larva are notochord, muscle, and mesenchyme. Formation of muscle cells is a cell-autonomous process, and localized maternal macho-l mRNA specify muscle fate in the posterior marginal zone of the early embryo. In contrast, inductive influence from endoderm precursors plays important roles in the specification of notochord and mesenchyme fates. FGF-Ras-MAPK signaling is involved In the induction of both tissues. The difference in responsiveness of the posterior mesenchyme and anterior notochord precursors to FGF signaling is caused by the presence or absence of intrinsic factors that inherited from the posterior-vegetal egg cytoplasm, respectively. In these inductions, directed signal polarizes the induced cells and promotes asymmetric cell divisions to produce two daughter cells with distinct fates.

  • PDF

Role of FGF and MEK Signaling in Formation of the Hydrostatic Pressure Receptor Cells during Ascidian Embryogenesis (멍게의 수압수용체세포 형성에서 FGF와 MEK 신호의 역할)

  • Seo, Hyeong-Joo;Kim, Gil-Jung
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.291-296
    • /
    • 2009
  • In most larvae of ascidian, two sensory pigment cells, otolith and ocellus, lie in their brain vesicle. They also have a third type of sensory cells: hydrostatic pressure receptor (Hpr) cells. The Hpr cells were presumed to be hydrostatic pressure-detection cells, but their precise functions is still disputed. In this study, we investigated whether an FGF signaling is involved in formation of Hpr cells. When fertilized eggs were injected with Hr-FGF9/16/20 antisense MO, the resulting larvae showed severe abnormalities with no expression of the Hpr cell-specific Hpr-1 antigen. Similar results were obtained using an FGF receptor inhibitor, SU5402, and an MEK inhibitor, U0126. Embryos treated with SU5402 or U0126 during the 32-cell and hatching stages did not express the Hpr-1 antigen. To elucidate the temporal requirement for the FGF signaling in formation of Hpr cells, embryos were treated with SU5402 for 2 h, or U0126 for 20 min during various embryonic stages. Larvae treated with SU5402 from the 16-cell stage to the 64-cell stage did not express the Hpr-1 antigen, whereas those treated at the early gastrula stage expressed the Hpr-1 antigen. When U0126 treatment was carried out at various stages between the 8-cell and late gastrula stages, larvae scarcely formed the Hpr cells. They showed expression of the Hpr-1 antigen when embryos were placed in U0126 just before the neural plate stage. These results suggest that FGF9/16/20 signaling is involved in formation of Hpr cells from the primary neural induction stage to the late gastrula stage.

  • PDF

Zic3z Defines the Dorsal and Vegetal Neuroectoderm in the Zebrafish Embryonic Development

  • Lee, Kyu-Sun;Huh, Tae-Lin;Lee, Chang-Joong;Rhee, Myung-Chull
    • Animal cells and systems
    • /
    • v.12 no.1
    • /
    • pp.23-33
    • /
    • 2008
  • The Zic family is a group of genes encoding zinc finger proteins that are highly expressed in the mammalian cerebellum. Zic genes are the vertebrate homologue of Drosophila pair-rule gene, odd-paired(opa), which plays important roles in the parasegmental subdivision as well as in the visceral mesoderm development of Drosophila embryos. Recent studies on human, mouse, frog, fish and ascidian Zic homologues support that Zic genes are involved in a variety of developmental processes, including neurogenesis, myogenesis, skeletal patterning, and left-right axis establishment. In an effort to explore possible functions of Zic proteins during vertebrate embryogenesis, we initially examined more detailed expression pattern of zebrafish homologue of zic3(zic3z). zic3z transcripts are detected in the neuroectoderm, neural plate, dorsal neural tube, and brain regions including eye field during early embryonic development. Marker DNA studies found that zic3z transcription is modulated by BMP, Wnt, and Nodal signals particularly in the dorsal and vegetal neuroectoderm at gastrula. Interfering with zic3z translation with zic3z-specific morpholino causes abnormal brain formation and expansion of the optic stalk cells. Retinal ganglion cells(RGCs) undergo abnormal neuronal differentiation. These findings suggest that zic3z defines the dorsal and vegetal neuroectoderm to specify brain formation and retinal neurogenesis during early embryonic development.

Characterization of the Stretch-Activated Channel in the Hamster Oocyte (햄스터난자에서 신전에 의해 활성화되는 통로의 성상)

  • Kim, Y.-M.;Hong, S.-G.
    • Journal of Embryo Transfer
    • /
    • v.19 no.2
    • /
    • pp.89-99
    • /
    • 2004
  • Stretch-activated channels (SACs) responds to membrane stress with changes in open probability (Po). They play essential roles in regulation of cell volume and differentiation, vascular tone, and in hormonal secretion. SACs highly present in Xenopus oocytes and Ascidian oocytes are suggested to be involved in the regulation of pH and fluid transport to balance the osmotic pressure, but remain unclear in mammanlian oocytes. This study was investigated to find the presence of SACs in hamster oocytes and to examine their electrophysiological properties. To infer a role of SAC in relation to the development of early stage, we followed up to the stage of two-cell zygote with patch clamp techniques. Single channels were elicited by negative pressure (lower than ­15 cm$H_2O$). Interestingly, SACs were dependent on permeable cations such as $Na^+$ or $K^+$. As permeable cation removed from both sides across the membrane, SAC activity completely disappeared. When permeable cations present only in intracellular compartment, outward currents appeared at positive potentials. In contrast to this, inward currents occurred only at the negative voltage when permeable cation absent in cell interior. These result suggests that SAC carry cations through the nonselective cation channel (NSC channel). Taken together, we found that stretch activated channels present in hamster oocyte and the channel may carry cations through NSC channels. This stretch activated-NSC channels may play physiological role(s) in oocyte growth, maturation, fertilization and embryogenesis in fertilized oocytes to two-cell zygotes of hamster.