• Title/Summary/Keyword: Asbestos-cement slate roof

Search Result 6, Processing Time 0.023 seconds

Comparison on the Releasing Characteristics of Asbestos Fiber from Plant Slate Roof and House Slate Roof (공장과 주택 슬레이트지붕의 석면 노출특성 비교)

  • Jeong, Jae-won;Yoo, Eun-chul;Lee, Sang-Jonn;Park, Geun-Tae
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.927-937
    • /
    • 2015
  • This study was performed to identify and quantify the asbestos fibers released from two types of asbestos-cement slate roofs. One is a plant roof installed in 1987 which contained 15% chrysotile, and the other is a residential roof installed before 1983 which contained 12% chrysotile. The concentrations of asbestos fibers in air surrounding asbestos-cement slate roofs and in the falling water harvested from the same roofs on rainy days ranged from 0.0012 to 0.0018 f/mL and from 1,764 f/L to 10,584 f/L, respectively. The concentration of inorganic fibers in the soil around asbestos-cement slate roofs was from 217 to 348 f/g. With the above results, the excess lifetime cancer risk (ELCR) for the risk assessment of the asbestos fibers released from asbestos-cement slate based on US EPA IRIS (Integrated risk information system) model is within 5.5E-06 ~ 6.5E-06 levels which indicates that the levels do not exceed "the acceptable risk(1.0E-05)" recommended by WHO. The asbestos concentration in air, drained rainfall and soil around the plant slate roof was higher than that around residential slate roof, but the excess lifetime cancer risk (ELCR) from residential slate was higher than that from plant slate. This suggested that the enclose and encapsulation of residential roofs have priority in removal policy to minimize the exposure risk.

Asbestos Concentrations in Ambient Air and Drained Rainwater from Slate Roofing by Construction Year and Roof Area (슬레이트 지붕의 설치년도와 면적에 따른 공기 및 유출 빗물 중의 석면 농도)

  • Jang, Bong-Ki;Ryu, Je-Young;Tak, Hyun-Wook;Song, Su-Jin;Lee, Jong-Wha;Lee, Gang-Ho;Choi, Jae-Ho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.3
    • /
    • pp.196-204
    • /
    • 2013
  • Objectives: The purpose of this study is to analyze the number and influence factors of asbestos fibers in the air of farmhouses with asbestos cement slate roofing, as well as in rainwater per unit area of the asbestos cement slate roofing. Methods: At a distance of 1 m from the end of asbestos cement slate roofing in 20 farmhouses, the asbestos fiber in the air was collected three times on a clear day downwind from the prevailing wind. Rainwater falling from the slate roofing was collected four times with a 1.05-m rainwater pipe on a rainy day at the 20 farmhouses, filtered with a MCE filter, and analyzed with a phase contrast microscope. Results: The geometric mean of the number of asbestos fibers in the air of farmhouses with slate roofing was 0.11 fiber/L, and no samples exceeded the recommended standard of 10 fiber/L. As a result of multiple regression analysis, a factor which gave a significant influence to the asbestos fiber content in the air was the gross area of slate roofing at the target farmhouses. The number of asbestos fibers included in rainwater collected per 1 m2 of slate roofing was 1,753 fiber/$L{\cdot}m2$. As a result of multiple regression analysis, the number of asbestos fibers contained in rainwater per 1 m2 of slate showed a significantly higher tendency as the year of slate roofing installation at the target farmhouses receded. Conclusions: It was confirmed for the first time in Korea that asbestos from asbestos cement slate roofing scatters into the air.

Releasing of asbestos fibers from the weathered asbestos cement slate roofing (슬레이트 지붕 노후화에 따른 석면 섬유 방출량)

  • Kim, Hyun-Wook;Park, Gye-Young;Han, Jin-Gu;Han, Young-Sun;Hwang, Bum-Gu;Lee, Jun-Hyuk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.2
    • /
    • pp.88-93
    • /
    • 2010
  • To confirm and quantify asbestos fibers released from the asbestos-cement slate roofs due to weathering, three houses, selected based on the year of built - 60's, 70, and 80's, were investigated. All of them were located in the downtown of Seoul. Rain or snow-melt water was collected from the roof in a 3.5 liter plastic bottle. A known amount of collected water was filtered on the 37 mm membrane filter, ashed in a muffle furnace, and subsequently treated with HCl to remove organic material. The treated remaining was refiltered on a 25mm membrane filter for PLM and PCM analyses. The NIOSH 7400 method was utilized for PCM counting. In addition, SEM/EDX was used to confirm the asbestos types. The results of this study showed that chrysotile fibers were confirmed by PLM in all samples analyzed. A significant amount of asbestos fibers were found in the water samples. The ranges of asbestos fibers counted from the samples collected in the 60's, 70's, and 80's were; 10,406.3~55,575.6 f/L, 5,218.8~38,126.2 f/L, and 2,906.3~7,798.6 f/L, respectively. As anticipated, concentrations of asbestos fibers increased with time of installment of the roofing material. We conclude that weathering can be a significant factor on the release of asbestos fibers from the asbestos cement products. Since asbestos fibers released into environment can be a source of significant health hazard, countermeasures, such as replacement, removal, and encapsulation of weathered asbestos slate, should be initiated immediately.

A Research Study on the Architectural Characteristics of old Samcheok Construction Company Housing in Donghae City -focused on A and No. 2·3 Houses as Registered Cultural Properties- (동해 구 삼척개발 사택의 건립과 건축적 특징에 관한 조사연구 -등록문화재 A호와 2·3호 사택을 중심으로-)

  • Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2015
  • The old Samcheok construction company housing in Donghae City was built for employees of Nitrogenous lime factory with railway construction in 1939. The 31 company houses are arranged in a rows including a House A, two No. 2 and 3 Houses, a dormitory, 12 row houses of two households, and 15 row houses of four households. At present, they are preserved with prototype at that time of building as a private company. Researching the architectural characteristics from A and No. $2{\cdot}3$ detached houses of them, the results are as follows. The tea room, living room, and kitchen are centralized and connected with toilet, bathroom, and maid's room by corridor. The exterior wall was finished with paintwork on cement mortar on stud wall framing plastered. The key exterior elements such as diamond shaped asbestos slate, large openings, corner bay window, lintel cornice are in accordance with drawings that they were first designed. The wooden roof structure is based on the structure that supports transverse load with a beam and beam plate instead of thrust. The kitchen and toilet are remodelled and only seem to be a mere shadow of their former self, but the position of sink and toilet bowl is the same as before.

A Study on Structural Maintenance of 'Old Wall' Designated as National Registered Cultural Heritage (국가등록문화재로 지정된 옛 담장의 정비 양상)

  • So, Hyun-Su;Jeong, Myeong-Seok
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.21-34
    • /
    • 2023
  • This study identified the materials and construction methods of 'Old Wall' in 13 villages which were designated as National Registered Cultural Heritage at the time of designation and examined the their structural changes based on field survey. The results are as follows: First, the 'Old Wall' consisted of 10 Soil-Stone Wall and 5 Stone Wall. At the time of designation, Stone Wall, which was built irregularly by dry-construction of natural stones, is similar in shape, but Soil-Stone Wall showed difference by the construction method of making used stones, joints, and faces. Second, the study extracted the changes of 'Old Wall' by repair and examined the changes of construction methods as well as the substitution and addition of materials of structure. The wall-roof was built with cement roof-tile and asbestos slate which have the advantage improve durability and cost-effectiveness. In addition, tile-mouth soil was added to korean traditional roof-tile to prevent rainwater from flowing in. Besides, to improve constructional convenience, the natural stone of the wall-body was replaced with blast stone, float stone and cut stone. Cement block, cement brick and cement mortar were frequently used to repair as well. As Soil-Stone Wall was transformed from irregular pattern-construction to comb pattern-construction and wet-construction was changed to dry-construction, it caused landscape and structural problems. Also, the layer of cement mortar applied to wall-foundation blocked the flow of rainwater that was induced by dry-construction of natural stones. Third, the study regarded that the problem with the repair of 'Old Wall' may occur as it is located in living space, because the owner of the wall could repair for the minor damages without technical knowledge. In addition, it is difficult for repair companies in charge of maintenance of Cultural Heritage to supply local materials, and it is differential construction specifications are not applied.

A study of asbestos containing material characteristics and grade of risk assessment in schools, Korea (일부 학교 건축물의 석면함유 건축자재(ACM) 특성과 위해등급에 관한 연구)

  • Jung, Joon-sig;Park, Hyung-kyu;Song, Hyea-suk;Lee, Won-jeong;Kim, Yoon-shin;Jeon, Hyung-jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.5029-5037
    • /
    • 2015
  • The objective of this study is to investigate the distribution of asbestos containing materials and to evaluate risk assessment method in some schools, Korea. For the survey on ACM risk assessment, we used both EPA AHERA rule and ASTM rule. We investigated 100 schools between January and December in 2010. Detection rate of the ACM according to construction year showed that before 1980's, 1990's, 2000's, after 2000's buildings were 100%, 94.1%, 100% and 62.5%, respectively. Compared with school types, detection rate of the ACM in Kindergarten, Elementary, Middle, High, Special Education schools were 100%, 97.1%, 92.9%, 100%, 80%, respectively. Ceiling textiles contained chrysolite/mixed amosite(2~8 %) and wall cement flat boards contained chrysolite(6~11 %). Also, gasket contained chrysolite(16~17 %), slate roof contained chrysolite(10~13 %). In this study, risk assessment EPA AHERA rule of ACM showed that all materials were "Pool" grade. And, ASTM rule risk assessment showed that all materials were "Q&M program" grade.