• Title/Summary/Keyword: As low as reasonably achievable (ALARA)

Search Result 24, Processing Time 0.026 seconds

The Efficacy of Fluorograb for Paediatric Patients Dose Reduction during Pneumatic Reduction and Voiding Cystourethrography(VCUG) (영.유아의 배뇨성 방광-요도 조영술 및 방사선 공기 주입 정복술시 피폭선량 경감을 위한 fluorograb의 유용성)

  • Kim, Sang-Tae;Choi, Ji-Won
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.385-390
    • /
    • 2009
  • The Pneumatic Reduction and VCUG (Voiding Cystourethrography) are commonly used in the paediatric age group. The procedures had a particularly long fluroscopic screening time, despite a successful outcome for paediatric patients. Pneumatic Reduction and VCUG almost invariably requires fluoroscopic guidance which does confer a radiation dose. This article contains suggestions on how the radiation dose to paediatric patients from Pneumatic Reduction and VCUG can be made "as low as reasonably achievable" (ALARA). The aim of our study was eliminated in spot image applying the FluoroGrab, which has function of capturing an image of interest area from the picturing while fluoroscopic procedures. FluoroGrab has clinical value equivalent to the spot image, and is applied to the most recent fluoroscopic procedures. The radiologist and the radiographers should consider new option for decreasing the radiation exposure delivered to paediatric patients by making equipment modifications to the fluoroscopy to optimize radiation exposure reduction techniques. Thus, we propose the FluoroGrab instead of spot exposure for the reduction of patient exposure dose in paediatric, and try to confirm the effect of the mitigating amount of radiation exposure to paediatric patients when pneumatic reduction and VCUG. Fluorograb is the safe and useful method that shows the equivalent level of accuracy to spot exposure, and to minimize the radiation load to paediatric patients are to be the substitute for the spot exposure for Pneumatic Reduction and VCUG.

The Efficacy of Fluorograb for Paediatric Patients Dose Reduction during Pneumatic Reduction and Voiding Cystourethrography (VCUG) (영아/유아의 공기 주입 정복술 및 방사선 배뇨성 방광요도 조영술시 피폭 선량 경감을 위한 FluroGrab의 유용성)

  • Kim, Sang-Tae;Choi, Ji Won;Han, Tae-Jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1167-1172
    • /
    • 2009
  • The Pneumatic Reduction and VCUG (Voiding Cystourethrography) are commonly used in the paediatric age group. The procedures had a particularly long fluroscopic screening time, despite a successful outcome for paediatric patients. Pneumatic Reduction and VCUG almost invariably requires fluoroscopic guidance which does confer a radiation dose. This article contains suggestions on how the radiation dose to paediatric patients from Pneumatic Reduction and VCUG can be made "as low as reasonably achievable" (ALARA). The aim of our study was eliminated in spot image applying the FluoroGrab, which has function of capturing an image of interest area from the picturing while fluoroscopic procedures. FluoroGrab has clinical value equivalent to the spot image, and is applied to the most recent fluoroscopic procedures. The radiologist and the radiographers should consider new option for decreasing the radiation exposure delivered to paediatric patients by making equipment modifications to the fluoroscopy to optimize radiation exposure reduction techniques. Thus, we propose the FluoroGrab instead of spot exposure for the reduction of patient exposure dose in paediatric, and try to confirm the effect of the mitigating amount of radiation exposure to paediatric patients when pneumatic reduction and VCUG. Fluorograb is the safe and useful method that shows the equivalent level of accuracy to spot exposure, and to minimize the radiation load to paediatric patients are to be the substitute for the spot exposure for Pneumatic Reduction and VCUG.

  • PDF

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.

Analysis of Dose Reduction Rate with Dose Modulation Technic Depending on BMI (PET/CT검사에서 Dose Modulation Technic 적용시 BMI에 따른 선량 감소율 분석)

  • Kim, Jung Wook;Park, Se Yun;Jo, Young Jun;Park, Jong Yeop
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.25-28
    • /
    • 2012
  • Purpose : It is important to reduce radiation dose associated with computed tomography (CT) scanning to as low as reasonably achievable (ALARA). With Dose Modulation Technic, user select a desired image quality and the system adapts tube current to obtain the desired image quality with greater radiation dose efficiency. In this paper, we presents a comprehensive description of fundamentals, clinical applications and radiation dose benefits of Dose Modulation Technic depending on Body Mass Index(BMI). Materials and Methods : In this study, 149 patients were examined(The mean age : $58{\pm}12.4$ years old). Biograph True Point 40 (Siemens, USA) and Gemini TF 64 (Philips. Cleveland) were used for equipment. When we used Care Dose 4D (Siemens, USA) and D-dom (Philips, Cleveland), we measured dose reduction and Computed Tomography Dose Index (CTDI) depending on BMI. Then we analyze data using SPSS Ver.18. Results : When we used Care Dose 4D, p-value is considered statistically significant by groups with the result that we compared Care Dose 4D with D-dom. On the other hand, p-value isn't considered statistically significant by groups using D-dom. Conclusion : Dose modulation based on the projection angle didn't affect degree of obesity. And When using Care Dose 4D, dose reduction rate in the normal patients were higher than the obese. In this study, there are errors on somato type. So I think more research have to be done. Then application of Dose Modulation technic can help in maintaining acceptable image quality while reducing radiation dose by 20-60% in most instances.

  • PDF