• Title/Summary/Keyword: As detection

Search Result 18,658, Processing Time 0.042 seconds

Effect of Nanostructures of Au Electrodes on the Electrochemical Detection of As

  • Kastro, Kanido Camerun;Seo, Min Ji;Jeong, Hwakyeung;Kim, Jongwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.206-213
    • /
    • 2019
  • The development of simple methods for As detection has received great attention because As is a toxic chemical element causing environmental and health-related issues. In this work, the effect of nanostructures of Au electrodes on their electroanalytical performance during As detection was investigated. Different Au nanostructures with various surface morphologies such as nanoplate Au, nanospike Au, and dendritic Au structures were prepared, and their electrochemical behaviors toward square-wave anodic stripping voltammetric As detection were examined. The difference in intrinsic efficiency for As detection between nanostructured and flat Au electrodes was explained based on the crystallographic orientations of Au surfaces, as examined by the underpotential deposition of Pb. The most efficient As detection performance was obtained with nanoplate Au electrodes, and the effects of the pre-deposition time and interference on As detection of the nanoplate Au electrodes were also investigated.

Electrochemical Determination of As(III) at Nanoporous Gold Electrodes with Controlled Surface Area

  • Seo, Min Ji;Kastro, Kanido Camerun;Kim, Jongwon
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.1
    • /
    • pp.45-50
    • /
    • 2019
  • Because arsenic (As) is a chemical substance toxic to humans, there have been extensive investigations on the development of As detection methods. In this study, the electrochemical determination of As on nanoporous gold (NPG) electrodes was investigated using anodic stripping voltammetry. The electrochemical surface area of the NPG electrodes was controlled by changing the reaction times during the anodization of Au for NPG preparation, and its effect on the electrochemical behavior during As detection was examined. The detection efficiency of the NPG electrodes improved as the roughness factor of the NPG electrodes increased up to around 100. A further increase in the surface area of the NPG electrodes resulted in a decrease of the detection efficiency due to high background current levels. The most efficient As detection efficiency was obtained on the NPG electrodes prepared with an anodization time of 50 s. The effects of the detection parameters and of the Cu interference in As detection were investigated and the NPG electrode was compared to flat Au electrodes.

Measure of Effectiveness for Detection and Cumulative Detection Probability (탐지효과도 및 누적탐지확률)

  • Cho, Jung-Hong;Kim, Jea Soo;Lim, Jun-Seok;Park, Ji-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.601-614
    • /
    • 2012
  • Since the optimized use of sonar systems available for detection is a very practical problem for a given ocean environment, the measure of mission achievability is needed for operating the sonar system efficiently. In this paper, a theory on Measure Of Effectiveness(MOE) for specific mission such as detection is described as the measure of mission achievability, and a recursive Cumulative Detection Probability(CDP) algorithm is found to be most efficient from comparing three CDP algorithms for discrete glimpses search to reduce computation time and memory for complicated scenarios. The three CDPs which are MOE for sonar-maneuver pattern are calculated as time evolves for comparison, based on three different formula depending on the assumptions as follows; dependent or independent glimpses, unimodal or non-unimodal distribution of Probability of Detection(PD) as a function of observation time interval for detection. The proposed CDP algorithm which is made from unimodal formula is verified and applied to OASPP(Optimal Acoustic Search Path Planning) with complicated scenarios.

Traffic Seasonality aware Threshold Adjustment for Effective Source-side DoS Attack Detection

  • Nguyen, Giang-Truong;Nguyen, Van-Quyet;Nguyen, Sinh-Ngoc;Kim, Kyungbaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2651-2673
    • /
    • 2019
  • In order to detect Denial of Service (DoS) attacks, victim-side detection methods are used popularly such as static threshold-based method and machine learning-based method. However, as DoS attacking methods become more sophisticated, these methods reveal some natural disadvantages such as the late detection and the difficulty of tracing back attackers. Recently, in order to mitigate these drawbacks, source-side DoS detection methods have been researched. But, the source-side DoS detection methods have limitations if the volume of attack traffic is relatively very small and it is blended into legitimate traffic. Especially, with the subtle attack traffic, DoS detection methods may suffer from high false positive, considering legitimate traffic as attack traffic. In this paper, we propose an effective source-side DoS detection method with traffic seasonality aware adaptive threshold. The threshold of detecting DoS attack is adjusted adaptively to the fluctuated legitimate traffic in order to detect subtle attack traffic. Moreover, by understanding the seasonality of legitimate traffic, the threshold can be updated more carefully even though subtle attack happens and it helps to achieve low false positive. The extensive evaluation with the real traffic logs presents that the proposed method achieves very high detection rate over 90% with low false positive rate down to 5%.

Robust Face Detection Based on Knowledge-Directed Specification of Bottom-Up Saliency

  • Lee, Yu-Bu;Lee, Suk-Han
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.600-610
    • /
    • 2011
  • This paper presents a novel approach to face detection by localizing faces as the goal-specific saliencies in a scene, using the framework of selective visual attention of a human with a particular goal in mind. The proposed approach aims at achieving human-like robustness as well as efficiency in face detection under large scene variations. The key is to establish how the specific knowledge relevant to the goal interacts with the bottom-up process of external visual stimuli for saliency detection. We propose a direct incorporation of the goal-related knowledge into the specification and/or modification of the internal process of a general bottom-up saliency detection framework. More specifically, prior knowledge of the human face, such as its size, skin color, and shape, is directly set to the window size and color signature for computing the center of difference, as well as to modify the importance weight, as a means of transforming into a goal-specific saliency detection. The experimental evaluation shows that the proposed method reaches a detection rate of 93.4% with a false positive rate of 7.1%, indicating the robustness against a wide variation of scale and rotation.

An Empirical Comparison Study on Attack Detection Mechanisms Using Data Mining (데이터 마이닝을 이용한 공격 탐지 메커니즘의 실험적 비교 연구)

  • Kim, Mi-Hui;Oh, Ha-Young;Chae, Ki-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.208-218
    • /
    • 2006
  • In this paper, we introduce the creation methods of attack detection model using data mining technologies that can classify the latest attack types, and can detect the modification of existing attacks as well as the novel attacks. Also, we evaluate comparatively these attack detection models in the view of detection accuracy and detection time. As the important factors for creating detection models, there are data, attribute, and detection algorithm. Thus, we used NetFlow data gathered at the real network, and KDD Cup 1999 data for the experiment in large quantities. And for attribute selection, we used a heuristic method and a theoretical method using decision tree algorithm. We evaluate comparatively detection models using a single supervised/unsupervised data mining approach and a combined supervised data mining approach. As a result, although a combined supervised data mining approach required more modeling time, it had better detection rate. All models using data mining techniques could detect the attacks within 1 second, thus these approaches could prove the real-time detection. Also, our experimental results for anomaly detection showed that our approaches provided the detection possibility for novel attack, and especially SOM model provided the additional information about existing attack that is similar to novel attack.

YOLOv5 based Anomaly Detection for Subway Safety Management Using Dilated Convolution

  • Nusrat Jahan Tahira;Ju-Ryong Park;Seung-Jin Lim;Jang-Sik Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_1
    • /
    • pp.217-223
    • /
    • 2023
  • With the rapid advancement of technologies, need for different research fields where this technology can be used is also increasing. One of the most researched topic in computer vision is object detection, which has widely been implemented in various fields which include healthcare, video surveillance and education. The main goal of object detection is to identify and categorize all the objects in a target environment. Specifically, methods of object detection consist of a variety of significant techniq ues, such as image processing and patterns recognition. Anomaly detection is a part of object detection, anomalies can be found various scenarios for example crowded places such as subway stations. An abnormal event can be assumed as a variation from the conventional scene. Since the abnormal event does not occur frequently, the distribution of normal and abnormal events is thoroughly imbalanced. In terms of public safety, abnormal events should be avoided and therefore immediate action need to be taken. When abnormal events occur in certain places, real time detection is required to prevent and protect the safety of the people. To solve the above problems, we propose a modified YOLOv5 object detection algorithm by implementing dilated convolutional layers which achieved 97% mAP50 compared to other five different models of YOLOv5. In addition to this, we also created a simple mobile application to avail the abnormal event detection on mobile phones.

Measure of Effectiveness Analysis of Active SONAR for Detection (능동소나 탐지효과도 분석)

  • Park, Ji-Sung;Kim, Jea-Soo;Cho, Jung-Hong;Kim, Hyoung-Rok;Shin, Kee-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.118-129
    • /
    • 2013
  • Since the obstacles and mines are of the risk factors for operating ships and submarines, the active sonar system is inevitably used to avoid the hazards in ocean environment. In this paper, modeling and simulation algorithm is used for active sonar systemto quantify the measure of mission achievability, which is known as Measure of Effectiveness(MOE), specifically for detection in this study. MOE for detection is directly formulated as a Cumulative Detection Probability(CDP) calculated from Probability of Detection(PD) in range and azimuth. The detection probability is calculated from Transmission Loss(TL) and the sonar parameters such asDirectivity Index (DI) calculated from the shape of transmitted and received array, steered beam patterns, and Reverberation Level (RL). The developed code is applied to demonstrating its applicability.

Deep Learning Based Drone Detection and Classification (딥러닝 기반 드론 검출 및 분류)

  • Yi, Keon Young;Kyeong, Deokhwan;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.2
    • /
    • pp.359-363
    • /
    • 2019
  • As commercial drones have been widely used, concerns for collision accidents with people and invading secured properties are emerging. The detection of drone is a challenging problem. The deep learning based object detection techniques for detecting drones have been applied, but limited to the specific cases such as detection of drones from bird and/or background. We have tried not only detection of drones, but classification of different drones with an end-to-end model. YOLOv2 is used as an object detection model. In order to supplement insufficient data by shooting drones, data augmentation from collected images is executed. Also transfer learning from ImageNet for YOLOv2 darknet framework is performed. The experimental results for drone detection with average IoU and recall are compared and analysed.

Comparison of Detection Probability for Conventional and Time-Reversal (TR) Radar Systems

  • Yoo, Hyung-Ha;Koh, Il-Suek
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.70-76
    • /
    • 2012
  • We compare the detection probabilities of the time-reversal(TR) detection system and the conventional radar system. The target is assumed to be hidden inside a random medium such as a forest. We propose a TR detection system based on the SAR(Synthetic Aperture Radar) algorithm. Unlike the conventional SAR images, the proposed TR-SAR system has an interesting property. Specifically, the target-related signal components due to the time-reversal refocusing characteristics, as well as some of clutter-related signal components are concentrated at the time-reversal reference point. The remaining clutter-related signal components are scattered around that reference point. In this paper, we model the random media as a collection of point scatterers to avoid unnecessary complexities. We calculate the detection probability of the TR radar system based on the proposed simple random media model.