• Title/Summary/Keyword: Artinian ring

Search Result 61, Processing Time 0.026 seconds

UNIT-DUO RINGS AND RELATED GRAPHS OF ZERO DIVISORS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1629-1643
    • /
    • 2016
  • Let R be a ring with identity, X be the set of all nonzero, nonunits of R and G be the group of all units of R. A ring R is called unit-duo ring if $[x]_{\ell}=[x]_r$ for all $x{\in}X$ where $[x]_{\ell}=\{ux{\mid}u{\in}G\}$ (resp. $[x]_r=\{xu{\mid}u{\in}G\}$) which are equivalence classes on X. It is shown that for a semisimple unit-duo ring R (for example, a strongly regular ring), there exist a finite number of equivalence classes on X if and only if R is artinian. By considering the zero divisor graph (denoted ${\tilde{\Gamma}}(R)$) determined by equivalence classes of zero divisors of a unit-duo ring R, it is shown that for a unit-duo ring R such that ${\tilde{\Gamma}}(R)$ is a finite graph, R is local if and only if diam(${\tilde{\Gamma}}(R)$) = 2.

ON ENDOMORPHISM RING OF H-INVARIANT MODULES

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • v.6 no.2
    • /
    • pp.167-182
    • /
    • 1990
  • The relationships between submodules of a module and ideals of the endomorphism ring of a module had been studied in [1]. For a submodule L of a moudle M, the set $I^L$ of all endomorphisms whose images are contained in L is a left ideal of the endomorphism ring End (M) and for a submodule N of M, the set $I_N$ of all endomorphisms whose kernels contain N is a right ideal of End (M). In this paper, author defines an H-invariant module and proves that every submodule of an H-invariant module is the image and kernel of unique endomorphisms. Every ideal $I^L(I_N)$ of the endomorphism ring End(M) when M is H-invariant is a left (respectively, right) principal ideal of End(M). From the above results, if a module M is H-invariant then each left, right, or both sided ideal I of End(M) is an intersection of a left, right, or both sided principal ideal and I itself appropriately. If M is an H-invariant module then the ACC on the set of all left ideals of type $I^L$ implies the ACC on M. Also if the set of all right ideals of type $I^L$ has DCC, then H-invariant module M satisfies ACC. If the set of all left ideals of type $I^L$ satisfies DCC, then H-invariant module M satisfies DCC. If the set of all right ideals of type $I_N$ satisfies ACC then H-invariant module M satisfies DCC. Therefore for an H-invariant module M, if the endomorphism ring End(M) is left Noetherian, then M satisfies ACC. And if End(M) is right Noetherian then M satisfies DCC. For an H-invariant module M, if End(M) is left Artinian then M satisfies DCC. Also if End(M) is right Artinian then M satisfies ACC.

  • PDF

MAXIMAL CHAIN OF IDEALS AND n-MAXIMAL IDEAL

  • Hemin A. Ahmad;Parween A. Hummadi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.331-340
    • /
    • 2023
  • In this paper, the concept of a maximal chain of ideals is introduced. Some properties of such chains are studied. We introduce some other concepts related to a maximal chain of ideals such as the n-maximal ideal, the maximal dimension of a ring S (M. dim(S)), the maximal depth of an ideal K of S (M.d(K)) and maximal height of an ideal K(M.d(K)).

A STRUCTURE OF NONCENTRAL IDEMPOTENTS

  • Cho, Eun-Kyung;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Seo, Yeon Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.25-40
    • /
    • 2018
  • We focus on the structure of the set of noncentral idempotents whose role is similar to one of central idempotents. We introduce the concept of quasi-Abelian rings which unit-regular rings satisfy. We first observe that the class of quasi-Abelian rings is seated between Abelian and direct finiteness. It is proved that a regular ring is directly finite if and only if it is quasi-Abelian. It is also shown that quasi-Abelian property is not left-right symmetric, but left-right symmetric when a given ring has an involution. Quasi-Abelian property is shown to do not pass to polynomial rings, comparing with Abelian property passing to polynomial rings.

Some Results on δ-Semiperfect Rings and δ-Supplemented Modules

  • ABDIOGLU, CIHAT;SAHINKAYA, SERAP
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.289-300
    • /
    • 2015
  • In [9], the author extends the definition of lifting and supplemented modules to ${\delta}$-lifting and ${\delta}$-supplemented by replacing "small submodule" with "${\delta}$-small submodule" introduced by Zhou in [13]. The aim of this paper is to show new properties of ${\delta}$-lifting and ${\delta}$-supplemented modules. Especially, we show that any finite direct sum of ${\delta}$-hollow modules is ${\delta}$-supplemented. On the other hand, the notion of amply ${\delta}$-supplemented modules is studied as a generalization of amply supplemented modules and several properties of these modules are given. We also prove that a module M is Artinian if and only if M is amply ${\delta}$-supplemented and satisfies Descending Chain Condition (DCC) on ${\delta}$-supplemented modules and on ${\delta}$-small submodules. Finally, we obtain the following result: a ring R is right Artinian if and only if R is a ${\delta}$-semiperfect ring which satisfies DCC on ${\delta}$-small right ideals of R.

MULTIPLICATIVE SET OF IDEMPOTENTS IN A SEMIPERFECT RING

  • Park, Sang-Won;Han, Jun-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.1033-1039
    • /
    • 2011
  • Let R be a ring with identity 1, I(R) be the set of all idempotents in R and G be the group of all units of R. In this paper, we show that for any semiperfect ring R in which 2 = 1+1 is a unit, I(R) is closed under multiplication if and only if R is a direct sum of local rings if and only if the set of all minimal idempotents in R is closed under multiplication and eGe is contained in the group of units of eRe. In particular, for a left Artinian ring in which 2 is a unit, R is a direct sum of local rings if and only if the set of all minimal idempotents in R is closed under multiplication.

ACTIONS OF FINITE-DIMENSIONAL SEMISIMPLE HOPF ALGEBRAS AND INVARIANT ALGEBRAS

  • Min, Kang-Ju;Park, Jun-Seok
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.225-232
    • /
    • 1998
  • Let H be a finite dimensional Hopf algebra over a field k, and A be an H-module algebra over k which the H-action on A is D-continuous. We show that $Q_{max}(A)$, the maximal ring or quotients of A, is an H-module algebra. This is used to prove that if H is a finite dimensional semisimple Hopf algebra and A is a semiprime right(left) Goldie algebra than $A#H$ is a semiprime right(left) Goldie algebra. Assume that Asi a semiprime H-module algebra Then $A^H$ is left Artinian if and only if A is left Artinian.

  • PDF

A Generalization of Formal Local Cohomology Modules

  • Rezaei, Shahram
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.737-743
    • /
    • 2016
  • Let a and b be two ideals of a commutative Noetherian ring R, M a finitely generated R-module and i an integer. In this paper we study formal local cohomology modules with respect to a pair of ideals. We denote the i-th a-formal local cohomology module M with respect to b by ${\mathfrak{F}}^i_{a,b}(M)$. We show that if ${\mathfrak{F}}^i_{a,b}(M)$ is artinian, then $a{\subseteq}{\sqrt{(0:{\mathfrak{F}}^i_{a,b}(M))$. Also, we show that ${\mathfrak{F}}^{\text{dim }M}_{a,b}(M)$ is artinian and we determine the set $Att_R\;{\mathfrak{F}}^{\text{dim }M}_{a,b}(M)$.

PIERCE STALKS OF EXCHANGE RINGS

  • Chen, Huanyin
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.819-830
    • /
    • 2010
  • We prove, in this article, that a ring R is a stable exchange ring if and only if so are all its Pierce stalks. If every Pierce stalks of R is artinian, then $1_R$ = u + $\upsilon$ with u, $\upsilon$ $\in$ U(R) if and only if for any a $\in$ R, there exist u, $\upsilon$ $\in$ U(R) such that a = u + $\upsilon$. Furthermore, there exists u $\in$ U(R) such that $1_R\;{\pm}\;u\;\in\;U(R)$ if and only if for any a $\in$ R, there exists u $\in$ U(R) such that $a\;{\pm}\;u\;\in\;U(R)$. We will give analogues to normal exchange rings. The root properties of such exchange rings are also obtained.

MODULES WHOSE CLASSICAL PRIME SUBMODULES ARE INTERSECTIONS OF MAXIMAL SUBMODULES

  • Arabi-Kakavand, Marzieh;Behboodi, Mahmood
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.253-266
    • /
    • 2014
  • Commutative rings in which every prime ideal is an intersection of maximal ideals are called Hilbert (or Jacobson) rings. We propose to define classical Hilbert modules by the property that classical prime submodules are intersections of maximal submodules. It is shown that all co-semisimple modules as well as all Artinian modules are classical Hilbert modules. Also, every module over a zero-dimensional ring is classical Hilbert. Results illustrating connections amongst the notions of classical Hilbert module and Hilbert ring are also provided. Rings R over which all modules are classical Hilbert are characterized. Furthermore, we determine the Noetherian rings R for which all finitely generated R-modules are classical Hilbert.