• Title/Summary/Keyword: Artificial warming

Search Result 72, Processing Time 0.031 seconds

Water Environments and Species Compositions of Phytoplankton at the Depths during Summer in the Coast of Dokdo, Korea (하계 독도연안의 수심별 수환경과 식물플랑크톤의 종조성 변화)

  • Kim, Mi-Kyung;Park, Jung-Won
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.48-57
    • /
    • 2009
  • The characteristics of physico-chemical factors and the species compositions of phytoplankton were investigated to analyze the marine ecosystem at the depths during summer in the coast of Dokdo (stations DOK1$\sim$3). The mean values of conductivity (32 mS cm$^{-1}$), total dissolved solids (45 mg L$^{-1}$), salinity (35.5 psu), total suspended solids (39 mg L$^{-1}$) were the highest in DOK1. The biomass (chl-${\alpha}$) of phytoplankton was the highest in the surface of station DOK1 (3.1 ${\mu}g$ L$^{-1}$). By means of physico-chemical factors (salinity, turbidity, chl-${\alpha}$, T-N, T-P and Si), the coast of Dokdo was estimated to be more polluted than the previous results in 2000. A total of 72 species in Dokdo were composed of 54 species (76.1%) for Bacillariophyceae and 13 species (18.3%) for Dinophyceae, 3 species (4.2%) for Chrysophyceae and 1 species (1.4%) for Cyanophyceae. The standing crops of phytoplankton were the highest (8.5 $\times$ 10$^4$ cells L$^{-1}$) at 20 m of station DOK1, while they were the lowest (1.65 $\times$ 10$^4$ cells L$^{-1}$) at 30 m of station 1. The dominance index was maximum (0.73) at 10 m of station DOK1 and was minimum (0.4) at 30 m of station 1. The diversity index was the highest (2.92) in the surface of station 2, while it was the lowest at 20 m (1.58). The dominant species of phytoplankton were Chaetoceros affinis (3.3 $\times$ 10$^4$ cells L$^{-1}$) at 20 m, Climacosphenia moniligera (2.8 $\times$ 10$^4$ cells L$^{-1}$) at 40 m and Melosira juergensii (1.7 $\times$ 10$^4$ cells L$^{-1}$) at 10 m of station DOK1. At the surface of station DOK2, the dominant species were Bacillaria paxillifer and Richelia intracellularis (1.4 $\times$ 10$^4$ cells L$^{-1}$, respectively), while it was Paralia sulcata (1.6 $\times$ 10$^4$ cells L$^{-1}$) at the surface of station DOK3. The station DOKl, where affected by upwelling, turbulence and convection due to the East Korean Warm Current, was the most eutrophicated water body in three stations. The monitoring of marine ecosystem in the coast of Dokdo should be continued to show the alternatives for water and species conservation and to purify the eutrophicated water body due to artificial pollutants as well as physico-chemical factors by the global warming, the climatic change, CO$_2$ etc.

Principle of restoration ecology reflected in the process creating the National Institute of Ecology

  • Kim, A. Reum;Lim, Bong Soon;Seol, Jaewon;Lee, Chang Seok
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.105-116
    • /
    • 2021
  • Background: The creation of the National Institute of Ecology began as a national alternative project to preserve mudflats instead of constructing the industrial complexes by reclamation, and achieve regional development. On the other hand, at the national level, the research institute for ecology was needed to cope with the worsening conditions for maintaining biodiversity due to accelerated climate change such as global warming and increased demand for development. In order to meet these needs, the National Institute of Ecology has the following objectives: (1) carries out studies for ecosystem change due to climate change and biodiversity conservation, (2) performs ecological education to the public through exhibition of various ecosystem models, and (3) promotes regional development through the ecological industry. Furthermore, to achieve these objectives, the National Institute of Ecology thoroughly followed the basic principles of ecology, especially restoration ecology, in the process of its construction. We introduce the principles and cases of ecological restoration applied in the process. Results: We minimized the impact on the ecosystem in order to harmonize with the surrounding environment in all the processes of construction. We pursued passive restoration following the principle of ecological restoration as a process of assisting the recovery of an ecosystem degraded for all the space except in land where artificial facilities were introduced. Reference information was applied thoroughly in the process of active restoration to create biome around the world, Korean peninsula forests, and wetland ecosystems. In order to realize true restoration, we pursued the ecological restoration in a landscape level as the follows. We moved the local road 6 and high-voltage power lines to underground to ensure ecological connectivity within the National Institute of Ecology campus. To enhance ecological diversity, we introduced perch poles and islands as well as floating leaved, emerged, wetland, and riparian plants in wetlands and mantle communities around the forests of the Korean Peninsula in the terrestrial ecosystem. Furthermore, in order to make the public aware of the importance of the intact nature, the low-lying landscape elements, which have disappeared due to excessive land use in most areas of Korea, was created by imitating demilitarized zone (DMZ) landscape that has these landscape elements. Conclusions: The National Institute of Ecology was created in an eco-friendly way by thoroughly reflecting the principles of ecology to suit its status and thus the impact on the existing ecosystem was minimized. This concept was also designed to be reflected in the process of operation. The results have become real, and a result of analysis on carbon budget analysis is approaching the carbon neutrality.

Effects of heat stress on conception in Holstein and Jersey cattle and oocyte maturation in vitro

  • Jihwan Lee;Doosan Kim;Junkyu Son;Donghyeon Kim;Eunjeong Jeon;Dajinsol Jung;Manhye Han;Seungmin Ha;Seongsoo Hwang;Inchul Choi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.324-335
    • /
    • 2023
  • Korea, located in East Asia in the northern hemisphere, is experiencing severe climate changes. Specifically, the heat stress caused by global warming is negatively affecting the dairy sector, including milk production and reproductive performance, as the major dairy cattle Holstein-Friesian is particularly susceptible to heat stress. Here, we collected artificial insemination and pregnancy data of the Holstein and the Jersey cows from a dairy farm from 2014 to 2021 and analyzed the association between the conception rate and the temperature-humidity index, calculated using the data from the closest official weather station. As the temperature-humidity index threshold increased, the conception rate gradually decreased. However, this decrease was steeper in the Holstein breed than in the Jersey one at a temperature-humidity index threshold of 75. To evaluate the effects of heat stress on the oocyte quality, we examined the nuclear and cytoplasmic maturation of Holstein (n = 158, obtained from six animals) and Jersey oocytes (n = 123, obtained from six animals), obtained by ovum pick-up. There were no differences in the nuclear maturation between the different conditions (heat stress: 40.5℃, non- heat stress: 37.5℃) or breeds, although the Holstein oocytes seemed to have a lower metaphase II development (p = 0.0521) after in vitro maturation under heat stress conditions. However, we found that the Holstein metaphase II oocytes exposed to heat stress presented more reactive oxygen species and a peripheral distribution of the mitochondria, compared to those of the Jersey cattle. Here, we show that weather information from local meteorological stations can be used to calculate the temperature-humidity index threshold at which heat stress influences the conception rate, and that the Jersey cows are more tolerant to heat stress in terms of their conception rate at a temperature-humidity index over 75. The lower fertility of the Holstein cows is likely attributed to impaired cytoplasmic maturation induced by heat stress. Thus, the Jersey cows can be a good breed for the sustainability of dairy farms for addressing climate changes in South Korea, as they are more resistant to hyperthermia.

Effects of Livestock Compost and Soil Conditioner Application on Greenhouse Gases Emission in Paddy Soil (가축분퇴비 및 토양개량제 처리가 온난화 가스 배출에 미치는 영향)

  • Lee, Kyeong-Bo;Kim, Jong-Gu;Shin, Yong-Kwang;Lee, Deog-Bae;Lee, Sang-Bok;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.117-122
    • /
    • 2005
  • To find out reducing way of methane emission from a paddy field monitoring on the greenhouse gases emissions were carried out in the paddy soil with livestock compost and soil conditioner. The seasonal variations of methane emission were high at 36 days and 86 days after rice transplanting, on the other hand those of nitrous oxide emission were high at 64 days after that day. Methane emission by cow compost application, pig compost application and chicken compost application were 331, 282 and 294 kg $ha^{-1}$, respectively. Otherwise, nitrous oxide emissions by cow compost application, pig compost application and chicken compost application were 1.60, 1.78 and 1.78 kg $ha^{-1}$ respectively. The total emission rate of greenhouse gases equivalent to $CO_2$ emission rate (GWP) was 7,447 kg $ha^{-1}$ in cow compost application, 6,474 kg $ha^{-1}$ in pig compost application and 6,726 kg $ha^{-1}$ in chicken compost application. Methane emission by Ca, $SiO_2$ and artificial zeolite application were 373, 264, 239 kg $ha^{-1}$, respectively. The total emission rate of greenhouse gases equivalent to $CO_2$ emission rate (GWP) was 8,295 kg $ha^{-1}$ in Ca application 5,978 kg $ha^{-1}$ in $SiO_2$ application and 5,447 kg $ha^{-1}$ in artificial zeolite application.

Effect of Double Layer Nonwoven Fabrics on the Growth, Quality and Yield of Oriental Melon(Cucumis melo L. var. makuwa Mak.) under Vinyl House (보온부직포 이중피복이 참외의 생육, 품질 및 수량에 미치는 영향)

  • Shin Yong Seub;Park So Deuk;Do Han Woo;Bae Su Gon;Kim Jwoo Hwan;Kim Byung Soo
    • Journal of Bio-Environment Control
    • /
    • v.14 no.1
    • /
    • pp.22-28
    • /
    • 2005
  • The use of blankets to preserve heat in oriental melon cultivation is a common practise without artificial heating and warming systems. Efficiency of blanket decreased with annually usage. This experiment was conducted to investigate the effect of double layer nonwoven fabrics on heat conservation, plant growth, fruit quality and yield of oriental melon in greenhouse. The results were compared among the non-woven fabrics of 9+3, 6+6, 6+3 and 12 ounce from transplanting to April 20, 2001, 2002. Night temperature within tunnel was high at 9+3, 6+6, 6+3 and 12 ounce in order. In plant growth, stem length, leaf numbers and exudate, under double layer nonwoven fabrics were better than single layer blanket of 12 ounce especially, 9+3 double layer blanket was the best. Fruit weight, flesh thickness, soluble solid and marketable yield rate remained same in all treatments. Fermented fruit rate was the highest in 12 ounce as $32.9\%,\;19.6\%\;under\;9+3,\;17.1\%\;under\;6+6,\;16.6\%$ under 6+3 double layer nonwoven fabric, respectively. Compared to 2,260kg yield per 10a of 12 ounce single layer nonwoven fabrics, $7\%$ was increased under 9+3 but $3\%\;and\;13\%$ were decreased under 6+6 and 6+3 double layer nonwoven fabrics, respectively. Compared to income, 4,499-thousand-won per 10a, of 12 ounce single layer blanket, $13\%\;and\;3$ were increased under 9+3 and 6+6 double layer nonwoven fabrics, respectively. Whereas, $10\%$ decreased under 6+3 double layer nonwoven fabrics. From this results it is evident that 9+3 double layer nonwoven fabrics was the best for thermokeeping, fruit quality, and was most economic under non heating system.

Community Distribution on Mountain Forest Vegetation of the Birobong Area in the Odaesan National Park, Korea (오대산 국립공원 비로봉 일대 산지 삼림식생의 군락분포에 관한 연구)

  • Choi, Young-Eun;Kim, Chang-Hwan;Oh, Jang-Geun;Lee, Nam-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.91-102
    • /
    • 2014
  • Forest vegetation of Birobong (1,563 m) in Odaesan National Park is classified into mountain forest vegetation and flatland forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, subalpine coniferous forest, subalpine broad-leaved forest, afforestation and etc., while riparian forest was found under the category of flatland forest vegetation. Including 196 communities of mountain forest vegetation, 1 community of flatland forest vegetation and 4 communities of other vegetation, the total of 201 communities were researched; the distributed colonies classified by physiognomy classification are 62 communities deciduous broad-leaved forest, 84 communities of valley forest, 15 communities of coniferous forests, 16 communities of subalpine coniferous forest, 3 communities of subalpine broad-leaved forest, 16 afforestation, 1 community of flatland forest and 4 other communities. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus variabilis, Tilia amurensis communities account for 37.08 percent of deciduous broad-leaved forest, Juglans mandshurica, Fraxinus mandshurica, Cornus controversa, Populus koreana community takes up 1.59 percent of mountain valley forest, Pinus densiflora community holds 6.65 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Quercus variabilis, Tilia amurensis, Juglans mandshurica, Fraxinus mandshurica, Cornus controversa, Populus koreana, Pinus densiflora are distributed as dominant species of the uppermost part in a forest vegetation of Birobong in Odaesan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Tilia amurensis and Juglans mandshurica which are climax species in the area. However, the distribution rate of deciduous broad-leaved forest seems to increase gradually due to global warming and artificial disturbance.

Study on the Distribution of Plant Community in the Deogyusan National Park (덕유산 국립공원 일대의 식물군락 분포에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Choi, Young-Eun;Lee, Nam-Sook;Kang, Eun-Ok
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.570-580
    • /
    • 2013
  • The forest vegetation of the Deogyusan National Park is classified into mountain forest vegetation and riparian forest vegetation. Mountain forest vegetation in the forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, subalpine coniferous forest, shrub forest, afforestation and other vegetation. Including 192 communities of mountain forest vegetation and 3 communities of other vegetation, the total of 195 communities were researched; the distributed colonies classified by physiognomy classification are 61 communities deciduous broad-leaved forest, 55 communities of valley forest, 17 communities of coniferous forests, 6 communities of subalpine coniferous forest, 3 communities of shrub forest, 50 afforestation and 3 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata, Quercus variabilis communities account for 66.00 percent of deciduous broad-leaved forest, Fraxinus mandshurica, Cornus controversa community takes up 64.40 percent of mountain valley forest, Pinus densiflora community holds 70.40 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Quercus serrata, Quercus variabilis, Fraxinus mandshurica, Cornus controversa, Pinus densiflora are distributed as dominant species of the uppermost part in a forest vegetation of Geochilbong in Deogyusan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area. However, the distribution rate of deciduous broad-leaved forest seems to increase gradually due to global warming and artificial disturbance.

Community Distribution on Forest Vegetation of the Hyangjeokbong in the Deogyusan National Park (덕유산 국립공원 향적봉 일대 삼림식생의 군락분포에 관한 연구)

  • Choi, Young-Eun;Oh, Jang-Geun;Kim, Chang-Hwan
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.289-300
    • /
    • 2013
  • Forest vegetation of Hyangjeokbong (1,614 m) in Deogyusan National Park is classified into mountain forest vegetation and flatland forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, subalpine coniferous forest, shrub forest, grassland forest, afforestation and etc., while riparian forest was found under the category of flatland forest vegetation. Including 122 communities of mountain forest vegetation and 2 communities of riparian forest, the total of 124 communities were researched; the distributed colonies classified by physiognomy classification are 42 communities deciduous broad-leaved forest, 37 communities of valley forest, 8 communities of coniferous forests, 6 communities of subalpine coniferous forest, 3 communities of shrub forest, 1 communities of grassland forest, 21 afforestation and 4 other communities. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata, Quercus variabilis communities account for 47.02 percent of deciduous broad-leaved forest, Fraxinus mandshurica community takes up 57.48 percent of mountain valley forest, Pinus densiflora community holds 77.53 percent of mountain coniferous forest holds, and Taxus cuspidate-Abies koreana community takes up about 50 percent of subalpine coniferous forest. Mountain shrub forest and mountain grassland forest vegetation are concentrated mainly on the top of Hyangjeokbong and the ridge connecting the top and Jungbong. Meanwhile, riparian forest vegetation comprises 0.024% of the whole vegetation area in a study area. In conclusion, minority species consisting of Quercus mongolica, Quercus serrata, Quercus variabilis, Fraxinus mandshurica, Cornus controversa, Pinus densiflora, Abies koreana and Taxus cuspidata are distributed as dominant species of the uppermost part in a forest vegetation region in Deogyusan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area. However, in respect of subalpine coniferous forest, the distribution rate of deciduous broad-leaved forest seems to increase gradually due to global warming and artificial disturbance.

Community Distribution on Forest Vegetation of the Geochilbong Area in the Deogyusan National Park, Korea (덕유산 국립공원 거칠봉 일대 삼림식생의 군락분포에 관한 연구)

  • Oh, Jang-Geun;Kim, Chang-Hwan;Lee, Nam-Sook;Gin, Yu-Ri
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.449-459
    • /
    • 2013
  • Forest vegetation of Geochilbong (1,177 m) in Deogyusan National Park is classified into mountain forest vegetation and flatland forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, afforestation and etc., while riparian forest was found under the category of flatland forest vegetation. Including 89 communities of mountain forest vegetation and 4 communities of other vegetation, the total of 93 communities were researched; the distributed colonies classified by physiognomy classification are 32 communities deciduous broadleaved forest, 21 communities of valley forest, 12 communities of coniferous forests, 24 afforestation and 4 other communities. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata, Quercus variabilis communities account for 56.54 percent of deciduous broad-leaved forest, Fraxinus mandshurica, Cornus controversa community takes up 46.58 percent of mountain valley forest, Pinus densiflora community holds 74.98 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Quercus serrata, Quercus variabilis, Fraxinus mandshurica, Cornus controversa, Pinus densiflora are distributed as dominant species of the uppermost part in a forest vegetation of Geochilbong in Deogyusan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area. However, the distribution rate of deciduous broad-leaved forest seems to increase gradually due to global warming and artificial disturbance.

Effect of Different Light Emitting Diode (LED) Lights on the Growth Characteristics and the Phytochemical Production of Strawberry Fruits during Cultivation (파장별 LED광이 딸기의 생장 특성과 생리 활성 물질 형성에 미치는 효과)

  • Choi, Hyo Gil;Kwon, Joon Kook;Moon, Byoung Yong;Kang, Nam Jun;Park, Kyoung Sub;Cho, Myeong Whan;Kim, Young Cheol
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.56-64
    • /
    • 2013
  • Recent unusual weather due to global warming causes shortage of daily sunlight and constitutes one of the primary reasons for agricultural damages. LED light sources are frequently utilized to compensate for the shortage of sunlight in greenhouse agriculture. The present study is aimed at evaluating formations of phytochemicals as well as growth characteristics of mature strawberry fruits ('Daewang' cultivar) during cultivation in a closed growth chamber equipped with artificial LED light as a sole light source. Each LED light of blue (448 nm), red (634 and 661 nm) or mixed blue plus red (blue:red = 3:7) was separately supplied and the intensity of each light was adjusted to $200{\pm}1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at plant level with a photoperiod consisted of 16 hours light and 8 hours darkness. Strawberries grown under mixed LED light of blue and red wavelengths showed a higher production of fruits than those grown under other LED treatments. Fructose, one of the free sugars, increased in mixed LED light-grown fruits. Anthocyanin contents were elevated remarkably in the mixed LED light-grown fruits compared with those in other LED treatments. Contrastingly, contents of total phenolics and flavonoids were not of much different from one another among the fruits treated with various LED lights. On the other hand, ripening of strawberry fruits was found to be faster when grown under blue LED light compared with other LED treatments. Moreover, antioxidant activities of blue or red LED light-grown fruits, respectively, were significantly higher than those of mixed LED light-grown fruits. We suggest that when daylight is in shortage during cultivation in a greenhouse, supplementation of sunlight with LED light, which is composed of blue and red wavelengths, could be useful for the enhancement of productivity as well as of free sugar content in strawberry fruits. In addition, for the strawberry culture in the plant factory, selective adoption of LED light wavelength would be required to accomplish the purpose of controlling fruit maturation time as well as of enhancing contents of sugars and antioxidants of fruits.