The Journal of the Institute of Internet, Broadcasting and Communication
/
v.20
no.1
/
pp.11-18
/
2020
This study aims to complement the poor performance of existing context-aware authentication techniques in the mobile environment. The data used are GPS, Call Detail Record(CDR) and app usage. locational classification according to GPS density was implemented in order to distinguish other people in populated areas in the processing of GPS. It also handles missing values that may occur in data collection. The authentication model consists of two long-short term memory(LSTM) and one Artificial Neural Network(ANN) that aggregates the results, which produces authentication scores. In this paper, we compare the accuracy of this technique with that of other studies. Then compare the number of authentication attempts required to detect someone else's authentication. As a result, we achieved an average 11.6% improvement in accuracy and faster detection of approximately 60% of the experimental data.
Transactions of the Korean Society of Mechanical Engineers A
/
v.38
no.2
/
pp.205-210
/
2014
Recently, pattern recognition methods have been widely used by researchers for fault diagnoses of mechanical systems. A pattern recognition method determines the soundness of a mechanical system by detecting variations in the system's vibration characteristics. Hidden Markov models (HMMs) and artificial neural networks (ANNs) have recently been used as pattern recognition methods in various fields. In this study, a HMM-ANN hybrid method for the fault diagnosis of a mechanical system is introduced, and a rotating wind turbine blade with a crack is selected for fault diagnosis. The existence, location, and depth of said crack are identified in this research. For improving the diagnostic accuracy of the method in spite of the presence of noise, a moment with a few specific frequencies is applied to the structure.
Purpose The purpose of this study is to identifies the demand pattern categorization of repair parts of Automotive After-sales Service(A/S) and proposes a demand prediction model for Auto repair parts using Long Short-Term Memory (LSTM) of artificial neural networks (ANN). The optimal parts inventory quantity prediction model is implemented by applying daily, weekly, and monthly the parts demand data to the LSTM model for the Lumpy demand which is irregularly in a specific period among repair parts of the Automotive A/S service. Design/methodology/approach This study classified the four demand pattern categorization with 2 years demand time-series data of repair parts according to the Average demand interval(ADI) and coefficient of variation (CV2) of demand size. Of the 16,295 parts in the A/S service shop studied, 96.5% had a Lumpy demand pattern that large quantities occurred at a specific period. lumpy demand pattern's repair parts in the last three years is predicted by applying them to the LSTM for daily, weekly, and monthly time-series data. as the model prediction performance evaluation index, MAPE, RMSE, and RMSLE that can measure the error between the predicted value and the actual value were used. Findings As a result of this study, Daily time-series data were excellently predicted as indicators with the lowest MAPE, RMSE, and RMSLE values, followed by Weekly and Monthly time-series data. This is due to the decrease in training data for Weekly and Monthly. even if the demand period is extended to get the training data, the prediction performance is still low due to the discontinuation of current vehicle models and the use of alternative parts that they are contributed to no more demand. Therefore, sufficient training data is important, but the selection of the prediction demand period is also a critical factor.
Damage caused by impact on a vehicle composed of CFRP(carbon fiber reinforced plastic) composite to reduce weight in the aerospace industries is related to the safety of passengers. Therefore, it is important to understand the damage behavior of materials that is invisible in impact situations, and research through the FEM(finite element model) is needed to simulate this. In this study, FEM suitable for predicting damage behavior was constructed for impact analysis of unidirectional laminated composite. The calibration parameters of the MAT_54 Enhanced Composite Damage material model in LS-DYNA were acquired by inverse estimation through ANN(artificial neural network) model. The reliability was verified by comparing the result of experiment with the results of the ANN model for the obtained parameter. It was confirmed that accuracy of FEM can be improved through optimization of calibration parameters.
Journal of the Korea institute for structural maintenance and inspection
/
v.14
no.5
/
pp.179-186
/
2010
When a structure is damaged, its dynamic responses (natural frequency, acceleration, strain) are found to be changed. The ANN(Artificial Neural Network) damage-assesment method is that some measured dynamic signals from the structural changing dynamic responses are applied to ANN to assess the structural damage. Although there have been some studies on a certain typical cases so far, it is rare to find studies about the characteristics of the ANN damage-assesment method or about its applicability, its strength and weakness. So this study researches on the characteristics of ANN damage assesment method and on a problem in application of the various dynamic responses to ANN. What the ANN damage assessment method usually does in past researches is to teach an ANN by using some response signals obtained from damaged structures under one kind of excitations and to identify the locations and the extents of damage of same structures under the same excitations. However, the excitations inflicted on the structures are not always the same. Thus this study experiments whether a ANN which is trained using the same excitations is able to identify the damage when different excitations inflict. All response signals are obtained from experimental models.
This study introduces a developed artificial neural networks(ANN) model as a more efficient and reliable prediction model in operating speed Prediction with the 85th percentile horizontal curve of two-way rural highway in the aspect of evaluating highway design consistency. On the assumption that the speed is decided by highway geometry features, total 30 survey sites were selected. Data include currie radius, curve length, intersection angle, sight distance, lane width, and lane of those sites and were used as input layer data of the ANN. The optimized model structure was drawn by number of unit of hidden layer, learning coefficient, momentum coefficient, and change in learning frequency in multi-layer a ANN model. To verify learning Performance of ANN, 30 survey sites were selected while data in obtained from the 20 cites were used as learning data and those from the remaining 10 sites were used as predictive data. As a result of statistical verification, the model D of 4 types of ANN was evaluated as the most similar model to the actual operating speed value: R2 was 85% and %RMSE was 0.0204.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.18-18
/
2018
상수관망 시스템(Water Distribution System, WDS)은 이용자에게 양질의 상수도를 공급하기 위해 구축된 사회기반시설물로써, 정수된 물이 사용처에 도달하기까지 송수과정에서 발생 가능한 수질저하를 고려해야 한다. 일반적으로 정수장에서 염소처리를 한 후, 도달시간을 고려한 시스템 내 잔류 염소농도를 유지함으로써 수질저하를 예방한다. 여기서 상수도 내 잔류 염소농도는 미생물 번식 및 관내 부식물 등 다양한 생물 화학적 오염을 효과적으로 예방하는 반면, 과다할 경우 이용자의 음용성을 저해할 수 있어 시스템 전반에 걸쳐 염소농도의 적절한 관리가 요구된다. 특히, 상수관망에서는 공급경로 및 공급량에 따라 각 수요처의 도달 염소농도가 다르게 분포할 수 있으므로, 시설운영자는 균등하고 적절한 염소농도를 유지하기 위해 추가적인 염소 재투입시설을 설치하여 함께 관리하고 있다. 이 때, 염소투입 시설의 운영계획은 EPANET과 같은 상수관망 해석모형의 수질모의를 바탕으로 수립된다. 그러나 일반적으로 수질모의는 수리해석과는 달리 긴 시간이 소요되는 단점이 존재한다. 본 연구에서는 이러한 단점을 개선하기 위해, 특정 네트워크의 수질모의 결과를 학습시킨 인공신경망(ANN) 모형을 구축하고 이를 이용하여 상수관망 수질모의 계산시간을 단축하고자 하였다. 여기서 ANN모형의 학습은 EPANET을 통해 미리 선정된 다양한 염소 투입지점의 염소 투입농도와 용수 공급량 자료, 그리고 주요 관측지점에서 측정된 염소농도자료를 이용하였다. 학습된 ANN모형을 EPANET 수질모의 결과와 비교 및 검증을 실시한 결과, 사전에 소요된 학습시간을 제외하면 수질모의 소요시간 측면에서 큰 개선효과를 보였으며, 대표지점에서의 수질모의 결과가 유사하였다. 추가적으로, 본 연구에서는 학습된 ANN모형과 최적화 알고리즘인 GA(Genitic Algorithm)를 연계하여 상수관망에서의 염소 재투입 스케줄링을 최적화하는 프로그램을 개발함으로써, 안전하고 경제적인 상수관망의 수질운영에 기여하고자 하였다.
Localization methods using radio signals should obtain range measurements from three or more anchors. However, a typical building consists of narrow, long hallways and corners, making it difficult to secure more than three light of sight anchors. The result is a multi-modal solution that makes it difficult to estimate the user's location. In order to overcome this problem, this paper proposes a method for estimating the location using artificial neural networks. Using the artificial neural network, even if a multi-modal solution occurs, the position can be estimated by acquiring user movement pattern information based on accumulated range measurements. The method does not require any additional equipment or sensors, and only anchor-based range measurements can estimate the user's location. In order to verify the proposed method, location estimation tests were performed in situations where the multi-modal solution occurred by installing an insufficient number of anchors in a building. As a result, it was confirmed that the location can be estimated even when the number of anchors is insufficient.
Kim, Seoyeon;Yun, Young-Sun;Eun, Seong-Bae;Cha, Sin;Jung, Jinman
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.21
no.5
/
pp.71-77
/
2021
Recently, there is a demand for efficient program development of an IoT application support frameworks considering heterogeneous hardware characteristics. In addition, the scope of hardware support is expanding with the development of neuromorphic architecture that mimics the human brain to learn on their own and enables autonomous computing. However, most existing IoT IDE(Integrated Development Environment), it is difficult to support AI(Artificial Intelligence) or to support services combined with various hardware such as neuromorphic architectures. In this paper, we design an AI component abstract model that supports the second-generation ANN(Artificial Neural Network) and the third-generation SNN(Spiking Neural Network), and implemented an autonomous IoT IDE based on the proposed model. IoT developers can automatically create AI components through the proposed technique without knowledge of AI and SNN. The proposed technique is flexible in code conversion according to runtime, so development productivity is high. Through experimentation of the proposed method, it was confirmed that the conversion delay time due to the VCL(Virtual Component Layer) may occur, but the difference is not significant.
Using the Artificial Neural Network model and Binary Logistic Regression model, this study investigates influence factors on the quality of life in terms of housing environment during the COVID-19 in Seoul. The results show that the lower the satisfaction level of housing policy, the lower the quality of life in the employment field and the lower the quality of residential field. On the other hand, permanent workers and self-employed respondents have experienced improvement in residential quality during the pandemic. A limitation of this study is associated with disentangling the causal relationship using the 'black box' characteristics of ANN method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.