• Title/Summary/Keyword: Artificial neural Networks (ANN)

Search Result 375, Processing Time 0.028 seconds

Compressive strength prediction by ANN formulation approach for CFRP confined concrete cylinders

  • Fathi, Mojtaba;Jalal, Mostafa;Rostami, Soghra
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1171-1190
    • /
    • 2015
  • Enhancement of strength and ductility is the main reason for the extensive use of FRP jackets to provide external confinement to reinforced concrete columns especially in seismic areas. Therefore, numerous researches have been carried out in order to provide a better description of the behavior of FRP-confined concrete for practical design purposes. This study presents a new approach to obtain strength enhancement of CFRP (carbon fiber reinforced polymer) confined concrete cylinders by applying artificial neural networks (ANNs). The proposed ANN model is based on experimental results collected from literature. It represents the ultimate strength of concrete cylinders after CFRP confinement which is also given in explicit form in terms of geometrical and mechanical parameters. The accuracy of the proposed ANN model is quite satisfactory when compared to experimental results. Moreover, the results of the proposed ANN model are compared with five important theoretical models proposed by researchers so far and considered to be in good agreement.

Application of Artificial Neural Network with Levenberg-Marquardt Algorithm in Geotechnical Engineering Problem (Levenberg-Marquardt 인공신경망 알고리즘을 이용한 지반공학문제의 적용성 검토)

  • Kim, Young-Su;Lee, Jae-Ho;Seo, In-Shik;Kim, Hyun-Dong;Shin, Ji-Sub;Na, Yun-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.987-997
    • /
    • 2008
  • Successful design, construction and maintenance of geotechnical structure in soft ground and marine clay demands prediction, control, stability estimation and monitoring of settlement with high accuracy. It is important to predict and to estimate the compression index of soil for predicting of ground settlement. Lab. and field tests have been and are indispensable tools to achieve this goal. In this paper, Artificial Neural Networks (ANNs) model with Levenberg-Marquardt Algorithm and field database were used to predict compression index of soil in Korea. Based on soil property database obtained from more than 1800 consolidation tests from soils samples, the ANNs model were proposed in this study to estimate the compression index, using multiple soil properties. The compression index from the proposed ANN models including multiple soil parameters were then compared with those from the existing empirical equations.

  • PDF

Multivariate Auxiliary Channel Classification using Artificial Neural Networks for LIGO Gravitational-Wave Detector

  • Oh, Sang-Hoon;Oh, John J.;Kim, Young-Min;Lee, Chang-Hwan;Vaulin, Ruslan;Hodge, Kari;Katsavounidis, Erik;Blackburn, Lindy;Biswas, Rahul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.131.2-131.2
    • /
    • 2011
  • We present performance of artificial neural network multivariate classifier in identifying non-astrophysical origin noise transients from the gravitational wave channel of Laser Interferometer Gravitational-wave Observatory (LIGO). LIGO has successfully conducted six science runs, achieving the sensitivity as planned and producing many fruitful scientific results. It has been well observed that the detector noise is non-Gaussian and non-stationary, which results in large excess of noise transients called glitches arising from instrumental and environmental artifacts. Great efforts have been committed to reduce the glitches by tuning the detector instruments and by vetoing them but further improvement is still needed. To this end, there have been efforts to incorporate data from hundreds of auxiliary, physical and environmental channels into identifying the glitches in the gravitational wave channel. We introduce a multivariate classification method using Artificial Neural Networks (ANNs) that efficiently handles large number of variables. In this poster, we present preliminary results of the application of our ANN algorithm to data from LIGO's Science Run 4 and compare its performance with conventional vetoing method.

  • PDF

Sound Based Machine Fault Diagnosis System Using Pattern Recognition Techniques

  • Vununu, Caleb;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.134-143
    • /
    • 2017
  • Machine fault diagnosis recovers all the studies that aim to detect automatically faults or damages on machines. Generally, it is very difficult to diagnose a machine fault by conventional methods based on mathematical models because of the complexity of the real world systems and the obvious existence of nonlinear factors. This study develops an automatic machine fault diagnosis system that uses pattern recognition techniques such as principal component analysis (PCA) and artificial neural networks (ANN). The sounds emitted by the operating machine, a drill in this case, are obtained and analyzed for the different operating conditions. The specific machine conditions considered in this research are the undamaged drill and the defected drill with wear. Principal component analysis is first used to reduce the dimensionality of the original sound data. The first principal components are then used as the inputs of a neural network based classifier to separate normal and defected drill sound data. The results show that the proposed PCA-ANN method can be used for the sounds based automated diagnosis system.

Robust DTC Control of Doubly-Fed Induction Machines Based on Input-Output Feedback Linearization Using Recurrent Neural Networks

  • Payam, Amir Farrokh;Hashemnia, Mohammad Naser;Fai, Jawad
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.719-725
    • /
    • 2011
  • This paper describes a novel Direct Torque Control (DTC) method for adjustable speed Doubly-Fed Induction Machine (DFIM) drives which is supplied by a two-level Space Vector Modulation (SVM) voltage source inverter (DTC-SVM) in the rotor circuit. The inverter reference voltage vector is obtained by using input-output feedback linearization control and a DFIM model in the stator a-b axes reference frame with stator currents and rotor fluxes as state variables. Moreover, to make this nonlinear controller stable and robust to most varying electrical parameter uncertainties, a two layer recurrent Artificial Neural Network (ANN) is used to estimate a certain function which shows the machine lumped uncertainty. The overall system stability is proved by the Lyapunov theorem. It is shown that the torque and flux tracking errors as well as the updated weights of the ANN are uniformly ultimately bounded. Finally, effectiveness of the proposed control approach is shown by computer simulation results.

A counting-time optimization method for artificial neural network (ANN) based gamma-ray spectroscopy

  • Moonhyung Cho;Jisung Hwang;Sangho Lee;Kilyoung Ko;Wonku Kim;Gyuseong Cho
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2690-2697
    • /
    • 2024
  • With advancements in machine learning technologies, artificial neural networks (ANNs) are being widely used to improve the performance of gamma-ray spectroscopy based on NaI(Tl) scintillation detectors. Typically, the performance of ANNs is evaluated using test datasets composed of actual spectra. However, the generation of such test datasets encompassing a wide range of actual spectra representing various scenarios often proves inefficient and time-consuming. Thus, instead of measuring actual spectra, we generated virtual spectra with diverse spectral features by sampling from categorical distribution functions derived from the base spectra of six radioactive isotopes: 54Mn, 57Co, 60Co, 134Cs, 137Cs, and 241Am. For practical applications, we determined the optimum counting time (OCT) as the point at which the change in the Kullback-Leibler divergence (ΔKLDV) values between the synthetic spectra used for training the ANN and the virtual spectra approaches zero. The accuracies of the actual spectra were significantly improved when measured up to their respective OCTs. The outcomes demonstrated that the proposed method can effectively determine the OCTs for gamma-ray spectroscopy based on ANNs without the need to measure actual spectra.

Short-term Load Forecasting Using Neural Networks By Electrical Load Pattern (전력부하 유형에 따른 신경회로망 단기부하예측에 관한 연구)

  • Park, H.S.;Lee, S.S.;Kim, H.S.;Mun, K.J.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.914-916
    • /
    • 1997
  • This paper presents the development of an Artificial Neural Networks(ANN) for Short-Term Load Forecasting(STLF). First, used historical load data is divided into 5 patterns for the each seasonal data using Kohonen networks. Second, classified data is used as inputs of Back-propagation networks for next day hourly load forecasting. The proposed method was tested with KEPCO hourly record (1994-95) and we obtained desirable results.

  • PDF

Performance of Cu-SiO2 Aerogel Catalyst in Methanol Steam Reforming: Modeling of hydrogen production using Response Surface Methodology and Artificial Neuron Networks

  • Taher Yousefi Amiri;Mahdi Maleki-Kakelar;Abbas Aghaeinejad-Meybodi
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.328-339
    • /
    • 2023
  • Methanol steam reforming (MSR) is a promising method for hydrogen supplying as a critical step in hydrogen fuel cell commercialization in mobile applications. Modelling and understanding of the reactor behavior is an attractive research field to develop an efficient reformer. Three-layer feed-forward artificial neural network (ANN) and Box-Behnken design (BBD) were used to modelling of MSR process using the Cu-SiO2 aerogel catalyst. Furthermore, impacts of the basic operational variables and their mutual interactions were studied. The results showed that the most affecting parameters were the reaction temperature (56%) and its quadratic term (20.5%). In addition, it was also found that the interaction between temperature and Steam/Methanol ratio is important on the MSR performance. These models precisely predict MSR performance and have great agreement with experimental results. However, on the basis of statistical criteria the ANN technique showed the greater modelling ability as compared with statistical BBD approach.

Evaluation of the Bending Moment of FRP Reinforced Concrete Using Artificial Neural Network (인공신경망을 이용한 FRP 보강 콘크리트 보의 휨모멘트 평가)

  • Park, Do Kyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.179-186
    • /
    • 2006
  • In this study, Multi-Layer Perceptron(MLP) among models of Artificial Neural Network(ANN) is used for the development of a model that evaluates the bending capacities of reinforced concrete beams strengthened by FRP Rebar. And the data of the existing researches are used for materials of ANN model. As the independent variables of input layer, main components of bending capacities, width, effective depth, compressive strength, reinforcing ratio of FRP, balanced steel ratio of FRP are used. And the moment performance measured in the experiment is used as the dependent variable of output layer. The developed model of ANN could be applied by GFRP, CFRP and AFRP Rebar and the model is verified by using the documents of other previous researchers. As the result of the ANN model presumption, comparatively precise presumption values are achieved to presume its bending capacities at the model of ANN(0.05), while observing remarkable errors in the model of ANN(0.1). From the verification of the ANN model, it is identified that the presumption values comparatively correspond to the given data ones of the experiment. In addition, from the Sensitivity Analysis of evaluation variables of bending performance, effective depth has the highest influence, followed by steel ratio of FRP, balanced steel ratio, compressive strength and width in order.

A Study on Application of ARIMA and Neural Networks for Time Series Forecasting of Port Traffic (항만물동량 예측력 제고를 위한 ARIMA 및 인공신경망모형들의 비교 연구)

  • Shin, Chang-Hoon;Jeong, Su-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.83-91
    • /
    • 2011
  • The accuracy of forecasting is remarkably important to reduce total cost or to increase customer services, so it has been studied by many researchers. In this paper, the artificial neural network (ANN), one of the most popular nonlinear forecasting methods, is compared with autoregressive integrated moving average(ARIMA) model through performing a prediction of container traffic. It uses a hybrid methodology that combines both the linear ARIAM and the nonlinear ANN model to improve forecasting performance. Also, it compares the methodology with other models in performance for prediction. In designing network structure, this work specially applies the genetic algorithm which is known as the effectively optimal algorithm in the huge and complex sample space. It includes the time delayed neural network (TDNN) as well as multi-layer perceptron (MLP) which is the most popular neural network model. Experimental results indicate that both ANN and Hybrid models outperform ARIMA model.