• Title/Summary/Keyword: Artificial neural Networks (ANN)

Search Result 375, Processing Time 0.027 seconds

Artificial neural network approach for calculating mass attenuation coefficient of different glass systems

  • A. Benhadjira;M.I. Sayyed;O. Bentouila;K.E. Aiadi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.100-105
    • /
    • 2024
  • In this study, we propose an alternative approach using Artificial Neural Networks (ANN) for determining Mass Attenuation Coefficients (MAC) in various glass systems. This method takes into account the weights of glass compositions, density, and photon energy as input features. The ANN model was trained and tested on a dataset consisting of 650 data points and subsequently validated through a K-fold cross-validation procedure. Our findings demonstrate a high level of accuracy, with R2 values ranging from 0.90 to 0.99. Additionally, the model exhibits robust extrapolation capabilities with an R2 score of 0.87 for predicting MAC values in a new glass system. Furthermore, this approach significantly reduces the need for costly and time-consuming computations and experiments, making it a potential tool for selecting materials for effective radiation protection.

Application of Back-propagation Algorithm for the forecasting of Temperature and Humidity (온도 및 습도의 단기 예측에 있어서 역전파 알고리즘의 적용)

  • Jeong, Hyo-Joon;Hwang, Won-Tae;Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.4
    • /
    • pp.271-279
    • /
    • 2003
  • Temperature and humidity forecasting have been performed using artificial neural networks model(ANN). We composed ANN with multi-layer perceptron which is 2 input layers, 2 hidden layers and 1 output layer. Back propagation algorithm was used to train the ANN. 6 nodes and 12 nodes in the middle layers were appropriate to the temperature model for training. And 9 nodes and 6 nodes were also appropriate to the humidity model respectively. 90% of the all data was used learning set, and the extra 10% was used to model verification. In the case of temperature, average temperature before 15 minute and humidity at present constituted input layer, and temperature at present constituted out-layer and humidity model was vice versa. The sensitivity analysis revealed that previous value data contributed to forecasting target value than the other variable. Temperature was pseudo-linearly related to the previous 15 minute average value. We confirmed that ANN with multi-layer perceptron could support pollutant dispersion model by computing meterological data at real time.

Estimation of impact characteristics of RC slabs under sudden loading

  • Erdem, R. Tugrul
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.479-486
    • /
    • 2021
  • Reinforced concrete (RC) slabs are exposed to several static and dynamic effects during their period of service. Accordingly, there are many studies focused on the behavior of RC slabs under these effects in the literature. However, impact loading which can be more effective than other loads is not considered in the design phase of RC slabs. This study aims to investigate the dynamic behavior of two-way RC slabs under sudden impact loading. For this purpose, 3 different simply supported slab specimens are manufactured. These specimens are tested under impact loading by using the drop test setup and necessary measurement devices such as accelerometers, dynamic load cell, LVDT and data-logger. Mass and drop height of the hammer are taken constant during experimental study. It is seen that rigidity of the specimens effect experimental results. While acceleration values increase, displacement values decrease as the sizes of the specimens have bigger values. In the numerical part of the study, artificial neural networks (ANN) analysis is utilized. ANN analysis is used to model different physical dynamic processes depending upon the experimental variables. Maximum acceleration and displacement values are predicted by ANN analysis. Experimental and numerical values are compared and it is found out that proposed ANN model has yielded consistent results in the estimation of experimental values of the test specimens.

Application of Artificial Neural Networks to the prediction of out-of-plane response of infill walls subjected to shake table

  • Onat, Onur;Gul, Muhammet
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.521-535
    • /
    • 2018
  • The main purpose of this paper is to predict missing absolute out-of-plane displacements and failure limits of infill walls by artificial neural network (ANN) models. For this purpose, two shake table experiments are performed. These experiments are conducted on a 1:1 scale one-bay one-story reinforced concrete frame (RCF) with an infill wall. One of the experimental models is composed of unreinforced brick model (URB) enclosures with an RCF and other is composed of an infill wall with bed joint reinforcement (BJR) enclosures with an RCF. An artificial earthquake load is applied with four acceleration levels to the URB model and with five acceleration levels to the BJR model. After a certain acceleration level, the accelerometers are detached from the wall to prevent damage to them. The removal of these instruments results in missing data. The missing absolute maximum out-of-plane displacements are predicted with ANN models. Failure of the infill wall in the out-of-plane direction is also predicted at the 0.79 g acceleration level. An accuracy of 99% is obtained for the available data. In addition, a benchmark analysis with multiple regression is performed. This study validates that the ANN-based procedure estimates missing experimental data more accurately than multiple regression models.

Rotor Resistance Estimation of Induction Motor by ANN (ANN에 의한 유도전동기의 회전자 저항 추정)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.27-34
    • /
    • 2006
  • This paper proposes a new method of on-line estimation for rotor resistance of the induction motor in the indirect vector controlled drive, using artificial neural network (ANN). The back propagation algorithm is used for training of the neural networks. The error between the desired state variable of an induction motor and actual state variable of a neural network model is back propagated to adjust the weight of a neural network model, so that the actual state variable tracks the desired value. The performance of rotor resistance estimator and torque and flux responses of drive, together with these estimators, are investigated variations rotor resistance from their nominal values. The rotor resistance are estimated analytically, using the proposed ANN in a vector controlled induction motor drive.

Learning an Artificial Neural Network Using Dynamic Particle Swarm Optimization-Backpropagation: Empirical Evaluation and Comparison

  • Devi, Swagatika;Jagadev, Alok Kumar;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • Training neural networks is a complex task with great importance in the field of supervised learning. In the training process, a set of input-output patterns is repeated to an artificial neural network (ANN). From those patterns weights of all the interconnections between neurons are adjusted until the specified input yields the desired output. In this paper, a new hybrid algorithm is proposed for global optimization of connection weights in an ANN. Dynamic swarms are shown to converge rapidly during the initial stages of a global search, but around the global optimum, the search process becomes very slow. In contrast, the gradient descent method can achieve faster convergence speed around the global optimum, and at the same time, the convergence accuracy can be relatively high. Therefore, the proposed hybrid algorithm combines the dynamic particle swarm optimization (DPSO) algorithm with the backpropagation (BP) algorithm, also referred to as the DPSO-BP algorithm, to train the weights of an ANN. In this paper, we intend to show the superiority (time performance and quality of solution) of the proposed hybrid algorithm (DPSO-BP) over other more standard algorithms in neural network training. The algorithms are compared using two different datasets, and the results are simulated.

Time-Series Prediction of Baltic Dry Index (BDI) Using an Application of Recurrent Neural Networks (Recurrent Neural Networks를 활용한 Baltic Dry Index (BDI) 예측)

  • Han, Min-Soo;Yu, Song-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.50-53
    • /
    • 2017
  • Not only growth of importance to understanding economic trends, but also the prediction to overcome the uncertainty is coming up for long-term maritime recession. This paper discussed about the prediction of BDI with artificial neural networks (ANN). ANN is one of emerging applications that can be the finest solution to the knotty problems that may not easy to achieve by humankind. Proposed a prediction by implementing neural networks that have recurrent architecture which are a Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). And for the reason of comparison, trained Multi Layer Perceptron (MLP) from 2009.04.01 to 2017.07.31. Also made a comparison with conventional statistics, prediction tools; ARIMA. As a result, recurrent net, especially RNN outperformed and also could discover the applicability of LSTM to specific time-series (BDI).

  • PDF

The Comparison of Neural Network Learning Paradigms: Backpropagation, Simulated Annealing, Genetic Algorithm, and Tabu Search

  • Chen Ming-Kuen
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.696-704
    • /
    • 1998
  • Artificial neural networks (ANN) have successfully applied into various areas. But, How to effectively established network is the one of the critical problem. This study will focus on this problem and try to extensively study. Firstly, four different learning algorithms ANNs were constructed. The learning algorithms include backpropagation, simulated annealing, genetic algorithm, and tabu search. The experimental results of the above four different learning algorithms were tested by statistical analysis. The training RMS, training time, and testing RMS were used as the comparison criteria.

  • PDF

Estimation of Future Reference Crop Evapotranspiration using Artificial Neural Networks (인공신경망 기법을 이용한 장래 잠재증발산량 산정)

  • Lee, Eun-Jeong;Kang, Moon-Seong;Park, Jeong-An;Choi, Jin-Young;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.1-9
    • /
    • 2010
  • Evapotranspiration (ET) is one of the basic components of the hydrologic cycle and is essential for estimating irrigation water requirements. In this study, artificial neural network (ANN) models for reference crop evapotranspiration ($ET_0$) estimation were developed on a monthly basis (May~October). The models were trained and tested for Suwon, Korea. Four climate factors, daily maximum temperature ($T_{max}$), daily minimum temperature ($T_{min}$), rainfall (R), and solar radiation (S) were used as the input parameters of the models. The target values of the models were calculated using Food and Agriculture Organization (FAO) Penman-Monteith equation. Future climate data were generated using LARS-WG (Long Ashton Research Station-Weather Generator), stochastic weather generator, based on HadCM3 (Hadley Centre Coupled Model, ver.3) A1B scenario. The evapotranspirations were 549.7 mm/yr in baseline period (1973-2008), 558.1 mm/yr in 2011-2030, 593.0 mm/yr in 2046-2065, and 641.1 mm/yr in 2080-2099. The results showed that the ANN models achieved good performances in estimating future reference crop evapotranspiration.