• 제목/요약/키워드: Artificial muscle actuator

검색결과 66건 처리시간 0.023초

Modeling and designing a power assist circuit using artificial muscle

  • Kagawa, Toshiharu;Fujita, Toshinori;Kawashima, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.121-126
    • /
    • 1993
  • Artificial muscle actuators are used in various fields. Especially, they are applied to the power assist circuit to make use of their characteristics. The purpose of this paper is to and analyze the power assist circuit using an artificial muscle actuator. As a result, it is found that the operating feeling of the power assist circuit depends mainly on the flow gain of the pneumatic servo valve. The required flow gain is calculated from the proposed model, and the experimental results agreed with the calculated results.

  • PDF

Intelligent Switching Control of the Pneumatic Artificial Muscle Manipulators

  • Ahn, Kyoung-Kwan;Thanh, TU Diep Cong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.76-81
    • /
    • 2004
  • Problems with the control, oscillatory motion and compliance of pneumatic systems have prevented their widespread use in advanced robotics. However, their compactness, power/weight ratio, ease of maintenance and inherent safety are factors that could be potentially exploited in sophisticated dexterous manipulator designs. These advantages have led to the development of novel actuators such as the McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle Manipulators. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external inertia load in the pneumatic artificial muscle manipulator. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is newly proposed. This estimates the external inertia load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external inertia loads.

  • PDF

Improvement of the Control Performance of Pneumatic Artificial Muscle Manipulators Using an Intelligent Switching Control Method

  • Ahn, Kyoung-Kwan;Thanh, TU Diep Cong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1388-1400
    • /
    • 2004
  • Problems with the control, oscillatory motion and compliance of pneumatic systems have prevented their widespread use in advanced robotics. However, their compactness, power/weight ratio, ease of maintenance and inherent safety are factors that could be potentially exploited in sophisticated dexterous manipulator designs. These advantages have led to the development of novel actuators such as the McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle Manipulators. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external inertia load in the pneumatic artificial muscle manipulator. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is newly proposed. This estimates the external inertia load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external inertia loads.

공압 인공근육 구동장치의 선형화 모델 기반 궤적추적제어 (Trajectory Tracking Control of Pneumatic Artificial Muscle Driving Apparatus based on the Linearized Model)

  • 장지성;유원상
    • 동력기계공학회지
    • /
    • 제10권3호
    • /
    • pp.97-103
    • /
    • 2006
  • In this study, a position trajectory tracking control algorithm is proposed for a pneumatic artificial muscle driving apparatus composed of a actuator which imitates the muscle of human, a position sensor and a control valve. The controller applied to the driving apparatus is composed of a state feedback controller and disturbance observer. The feedback controller which feeds back position, velocity and acceleration is derived from the linear model of pneumatic artificial muscle driving apparatus. The disturbance observer is designed to improve trajectory tracking performance and to reduce the effect of model discrepancy. The effectiveness of the designed controller is proved by experiments and the experimental results show that the pneumatic artificial muscle driving apparatus with the proposed control algorithm tracks given position reference inputs accurately.

  • PDF

Development of a Peristaltic Micropump with Lightweight Piezo-Composite Actuator Membrane Valves

  • Pham, My;Goo, Nam-Seo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.69-77
    • /
    • 2011
  • A peristaltic micropump with lightweight piezo-composite actuator (LIPCA) membrane valves is presented. The micropump contained three cylinder chambers that were connected by microchannels and two active membrane valves. A circular miniature LIPCA was developed and manufactured to be used as actuating diaphragms. The LIPCA diaphragm acted as an active membrane valve that alternate between open and closed positions at the inlet and outlet in order to produce high pumping pressure. In this LIPCA, a lead zirconium titanate ceramic with a thickness of 0.1 mm was used as an active layer. The results confirmed that the actuator produced a large out-of-plane deflection. During the design process, a coupled field analysis was conducted in order to predict the actuating behavior of the LIPCA diaphragm; the behavior of the actuator was investigated from both a theoretical and experimental perspective. The active membrane valve concept was introduced as a means for increasing pumping pressure, and microelectromechanical system techniques were used to fabricate the peristaltic micropump. The pumping performance was analyzed experimentally in terms of the flow rate, pumping pressure and power consumption.

Health Monitoring of a Composite Actuator with a PZT Ceramic during Electromechanical Fatigue Loading

  • Woo, Sung-Choong;Goo, Nam-Seo
    • 비파괴검사학회지
    • /
    • 제27권6호
    • /
    • pp.541-549
    • /
    • 2007
  • This work describes an investigation into the feasibility of using an acoustic emission (AE) technique to evaluate the integrity of a composite actuator with a PZT ceramic under electromechanical cyclic loading. AE characteristics have been analyzed in terms of the behavior of the AE count rate and signal waveform in association with the performance degradation of the composite actuator during the cyclic tests. The results showed that the fatigue cracking of the composite actuator with a PZT ceramic occurred only in the PZT ceramic layer, and that the performance degradation caused by the fatigue damage varied immensely depending on the existence of a protecting composite bottom layer. We confirmed the correlations between the fatigue damage mechanisms and AE signal types for the actuators that exhibited multiple modes of fatigue damage; transgranular micro damage, intergranular fatigue cracking, and breakdown by a short circuiting were related to a burst type signal showing a shortly rising and slowly decaying waveform with a comparably low voltage, a continuous type signal showing a gradual rising and slowly decaying waveform with a very high voltage and a burst and continuous type signal with a high voltage, respectively. Results from the present work showed that the evolution of fatigue damage in the composite actuator with a PZT ceramic can be nondestructively identified via in situ AE monitoring and microscopic observations.

구간분할 바이너리 제어기반 로봇핸드의 메커니즘에 관한 연구 (A Study on the Mechanism of the Robot Hand based on the Segment Binary Control)

  • 정상화;차경래;김현욱;최석봉;김광호;박준호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1232-1235
    • /
    • 2005
  • In recent years, as the robot technology is developed the researches on the artificial muscle actuator that enable robot to move dextrously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electroactive polymer. These actuators have the higher energy density than the electromechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper the segmented binary control for reducing the hysteresis of SMA is proposed and the simulation of anthropomorphic robotic hand is performed using ADAMS.

  • PDF

구간분할 바이너리 제어를 이용한 로봇핸드의 동특성에 관한 연구 (A study on Dynamic Characteristics of the Robot Hand Using the Segmented Binary Control)

  • 정상화;차경래;김현욱;최석봉;김광호;박준호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.144-149
    • /
    • 2005
  • In recent years, as the robot technology is developed the researches on the artificial muscle actuator that enable robot to move dextrously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electroactive polymer. These actuators have the higher energy density than the electromechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper the segmented binary control for reducing the hysteresis of SMA is proposed and the simulation of anthropomorphic robotic hand is performed using ADAMS.

  • PDF

구간분할 제어를 이용한 로봇핸드의 동특성에 관한 연구 (A Study on the Dynamic Characteristics of Robot Hand based on Segmented Control)

  • 정상화;김현욱;최석봉;박준호;김광호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.310-313
    • /
    • 2005
  • In recent years, as the robot technology is developed, the researches on the artificial muscle actuator that enable robot to move dexterously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electro-active polymer. These actuators have the higher energy density than the electro-mechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper, the simulation of anthropomophic robotic hand is performed using ADAMS and the segmented binary control for reducing the hysteresis of SMA is proposed. SMA is controlled by thermo-electric module. The relations between the force and the hysteresis are developed to verify the validity of the suggested method.

  • PDF

Performance Improvement of Pneumatic Artificial Muscle Manipulators Using Magneto-Rheological Brake

  • Ahn, Kyoung-Kwan;Cong Thanh, TU Diep;Ahn, Young-Kong
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.778-791
    • /
    • 2005
  • A novel pneumatic artificial muscle actuator (PAM actuator), which has achieved increased popularity to provide the advantages such as high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks, has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. Then it is not easy to realize the performance of transient response of pneumatic artificial muscle manipulator (PAM manipulator) due to the changes in the external inertia load with high speed. In order to realize satisfactory control performance, a variable damper-Magneto­Rheological Brake (MRB), is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control method brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity, uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control method and without regard for the changes of external inertia loads.