This paper describes a method to classify simple circular artificial markers on surfaces of a box on the back of hand to detect the pose of user's hand for VR/AR applications by using a Leap Motion camera and two IMU sensors. One IMU sensor is located in the box and the other IMU sensor is fixed with the camera. Multi-layer Perceptron (MLP) algorithm is adopted to classify artificial markers on each surface tracked by the camera using IMU sensor data. It is experimented successfully in real-time, 70Hz, under PC environments.
The purpose of this study is to develop an improved marker auto-identification algorithm for reduce of data processing time through improve the efficiency of noise elimination and marker separation. The maker auto-identification algorithm was programming named KUMAS used Delphi language. For the study, various experiments were conducted for the verification of KUMAS. and compared two systems of established with the KUMAS. Four different motions - cycling, gait, rotation, and pendulum -, were selected and tested. Motions were filmed 30Hz frames rate per second. ${\chi}^2$ used for statistical analysis. Significant level were ${\alpha}=.05$. The test results were as follow. 1. Increased the success ratio of marker auto-identification. 2. The efficiency of marker auto-identification was remarkably improved through marker separation, noise elimination. 3. The marker auto-identification ability was improved in 2D-image plane include the 3D motion. 4. Significant different were found between KUMAS and B-SYS(established system) with non-input the artificial noise frames, input the artificial noise frames and total frames.
We developed a non-contact shape measuring device using computer image processing technology. We present a method of calibrating a CCD video camera and a laser range finder which is the most important step toward making an accurate shape measuring system. An artificial neural network is used for the calibration. Our measurement system is composed of a semiconductor laser. a CCD video camera, a personal computer, and a linear motion table. We think that the developed system could be used for measuring the change in shape of the spent nuclear fuel rod before and after irradiation which is one of the most important tasks for developing a better nuclear fuel. A radiation shield is suggested for the possible utilization of the range finder in radioactive environment.
This research deals with posture optimization for humanoid robot against external forces using genetic algorithm and neural network. When the robot takes a motion to push an object, the torque of each joint is generated by reaction force at the palm. This study aims to optimize the posture of the humanoid robot that will change this torque. This study finds an optimized posture using a genetic algorithm such that torques are evenly distributed over the all joints. Then, a number of different optimized postures are generated from various the reaction forces at the palm. The data is to be used as training data of MLP(Multi-Layer Perceptron) neural network with BP(Back Propagation) learning algorithm. Humanoid robot can find the optimal posture at different reaction forces in real time using the trained neural network include non-training data.
The energy harvesting system using an inverted flag is analyzed by using an immersed boundary method to consider the fluid and solid interaction. The inverted flag flutters at a lower critical velocity than a conventional flag. A fluttering motion is classified into straight, symmetric, asymmetric, biased, and over flapping modes. The optimal energy harvesting efficiency is observed at the biased flapping mode. Using the three different machine learning algorithms, i.e., artificial neural network, random forest, support vector regression, the energy harvesting efficiency is predicted by taking bending rigidity, inclination angle, and flapping frequency as input variables. The R2 value of the artificial neural network and random forest algorithms is observed to be more than 0.9.
The automation of agricultural machines is an irreversible trend considering the demand for improved productivity and lack of labor in handling agricultural tasks. Unstructured working environments and weather often inhibit a seemingly simple task from being fully autonomously performed. In this context, we propose a remote driving system (RDS) to aid agricultural machines designed to operate autonomously. Particularly, we modify a commercial speed sprayer for orchard environments into a robotic speed sprayer to evaluate the proposed RDS's usability and test three sensor configurations in terms of human performance. Furthermore, we propose a confidence error ellipsebased task performance measure to evaluate human performance. In addition, we present field experimental results describing how the sensor configurations affect human performance. We find that a combination of a semiautonomous line tracking device and a wide-angle camera is the most effective for spraying. Finally, we discuss how to improve the proposed RDS in terms of usability and obtain a more accurate measure of human performance.
본 논문에서는 복합 개체 센싱(다축 멀티 센서)이 적용되고 수중 다이빙 시 몸통, 핀 부분의 동작 정보를 수집하여 수중 활동 시 발차기, 몸통 회전, 몸통 위치, 이동 속도 등의 움직임 정보를 수집 할 수 있도록 구성하여 다이빙 시 발생되는 다양한 동작 정보를 실시간 수집 할 수 있는 웨어러블 시스템 개발을 제안한다. 다이빙 Suit, 몸에 탈부착이 가능하도록 구성하여 개인의 수중 다이빙 상황을 실시간 정보 수집을 통하여 객관적으로 다이빙 자세, 공기소모와 의 관계 분석, 다이빙 습관 교정, 속도 조절 등 자가 진단 체계화 정보 구축하고, 다이빙 포함 다양한 해양 스포츠의 훈련 이슈는 수중에서 발생되는 문제를 객관화된 정보 없이 강사, 훈련생의 느낌으로만 교정 한다는 의미에서 보다 객관화된 센싱 정보와 복합적으로 수집 분석된 정보를 학습된 정보의 비교분석에 의하여 수중 다이빙의 문제점을 교정 할 수 있다.
We looked at how the damping qualities of epoxy composites changed when different amounts of graphite nanoplatelets (GNP) were added, from 0% to 6% by weight. A mix of free and forced vibration tests helped us find the key GNP content that makes the damper ability better the most. We also created a Representative Volume Element (RVE) model to guess how the alloys would behave mechanically and checked these models against testing data. An Artificial Neural Network (ANN) was also used to guess how these compounds would react to motion. With proper hyperparameter tweaking, the ANN model showed good correlation (R2=0.98) with actual data, indicating its ability to predict complex material behavior. Combining these methods shows how GNPs impact epoxy composite mechanical properties and how machine learning might improve material design. We show how adding GNPs to epoxy composites may considerably reduce vibration. These materials may be used in industries that value vibration damping.
목적 : 본 연구의 목적은 경도인지장애 고령자에게 인공지능 동작 인식 기술을 활용한 전산화인지훈련 프로그램을 실시하여 인지 기능, 우울감, 삶의 질을 향상시키고자 한다. 연구방법 : 연구 참여자는 총 7명(실험군 = 4명, 대조군 = 3명)이며 코로나-19 발생 기간인 2021년 10월부터 12월까지 시행되었다. 프로그램은 직접 개발한 인공지능 동작 인식 기술을 활용한 전산화 프로그램 "MOOVE Brain"을 활용했으며 실험군은 한 달 동안 주 3회 30분씩 프로그램을 진행하였고 대조군에게는 중재를 제공하지 않았다. 치료의 전후 평가는 Korean version of the Mini-Mental State Examination-2, Korean version of the Consortium to Establish a Registry for Alzheimer's Disease Assessment Packet for Daily Life Evaluation, Korean version of the short form Geriatric Depression Scale (SGDS-K), 그리고 Geriatric Quality of Life Scale (GQOL)을 이용하였다. 결과 : 치료 전후로 실험군의 주의력 지표인 Stroop Color Test에서 평균 점수가 향상되었고(p = .068), 그룹 간 비교를 했을 때는 실험군의 실행 기능 평가 지표인 Stroop Color/Word Test 평균 점수가 향상되었다(p = .057). 그룹 간의 변화량을 비교했을 때는 실험군의 삶의 질 측정 도구인 GQOL (p = .057)과 우울증 지표인 SGDS-K (p = .057)의 평균 점수가 개선되었다. 하지만 각 영역들은 통계적으로 유의미하지 않았다. 결론 : 본 연구의 결과는 코로나-19로 인해 격리되어 있거나 의료 서비스를 받기 힘든 경도인지장애 고령자의 인지 및 심리 사회적 문제를 해결하는 데 활용될 수 있을 것으로 기대된다.
전통적인 비디오 압축은 움직임 예측, 잔차 신호 변환 및 양자화를 통한 하이브리드 압축 방식을 기반으로 지금까지 발전해왔다. 최근 인공 신경망을 통한 기술이 빠르게 발전함에 따라, 인공 신경망 기반의 이미지 압축, 비디오 압축 연구 또한 빠르게 진행되고 있으며, 전통적인 비디오 압축 코덱의 성능과 비교해 높은 경쟁력을 보여주고 있다. 본 논문에서는 이러한 인공 신경망 기반 비디오 압축 모델의 성능을 향상시킬 수 있는 새로운 방법을 제시한다. 기본적으로는 기존 인공 신경망 기반 비디오 압축 모델들이 채택하고 있는 변환 및 복원 신경망과 엔트로피 모델(Entropy model)을 이용한 율-왜곡 최적화(Rate-distortion optimization) 방법을 사용하며, 인코더 측에서 디코더 측으로 압축된 레이턴트 정보(Latent information)를 전송할 때 엔트로피 모델이 추정하기 어려운 정보의 값을 이동시켜 전송할 비트량을 감소시키고, 손실된 정보를 추가로 전송함으로써 손실된 정보에 대한 왜곡을 보정한다. 이러한 방법을 통해 기존의 인공 신경망 기반 비디오 압축 기술인 MFVC(Motion Free Video Compression) 방법을 개선하였으며, 실험 결과를 통해 H.264를 기준으로 계산한 BDBR (Bjøntegaard Delta-Bitrate) 수치(%)로 MFVC(-14%) 보다 두 배 가까운 비트량 감축(-27%)이 가능함을 입증하였다. 제안된 방법은 MFVC 뿐 아니라, 레이턴트 정보와 엔트로피 모델을 사용하는 신경망 기반 이미지 또는 비디오 압축 기술에 광범위하게 적용할 수 있다는 장점이 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.