• 제목/요약/키워드: Artificial motion

검색결과 407건 처리시간 0.031초

HMD 환경에서 사용자 손의 자세 추정을 위한 MLP 기반 마커 분류 (Marker Classification by Sensor Fusion for Hand Pose Tracking in HMD Environments using MLP)

  • 록콩부;최은석;유범재
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.920-922
    • /
    • 2018
  • This paper describes a method to classify simple circular artificial markers on surfaces of a box on the back of hand to detect the pose of user's hand for VR/AR applications by using a Leap Motion camera and two IMU sensors. One IMU sensor is located in the box and the other IMU sensor is fixed with the camera. Multi-layer Perceptron (MLP) algorithm is adopted to classify artificial markers on each surface tracked by the camera using IMU sensor data. It is experimented successfully in real-time, 70Hz, under PC environments.

마커 자동 인식 향상 방법에 관한 연구 (The study for improve a method of Marker auto- identification)

  • 이현섭
    • 한국운동역학회지
    • /
    • 제13권1호
    • /
    • pp.23-38
    • /
    • 2003
  • The purpose of this study is to develop an improved marker auto-identification algorithm for reduce of data processing time through improve the efficiency of noise elimination and marker separation. The maker auto-identification algorithm was programming named KUMAS used Delphi language. For the study, various experiments were conducted for the verification of KUMAS. and compared two systems of established with the KUMAS. Four different motions - cycling, gait, rotation, and pendulum -, were selected and tested. Motions were filmed 30Hz frames rate per second. ${\chi}^2$ used for statistical analysis. Significant level were ${\alpha}=.05$. The test results were as follow. 1. Increased the success ratio of marker auto-identification. 2. The efficiency of marker auto-identification was remarkably improved through marker separation, noise elimination. 3. The marker auto-identification ability was improved in 2D-image plane include the 3D motion. 4. Significant different were found between KUMAS and B-SYS(established system) with non-input the artificial noise frames, input the artificial noise frames and total frames.

A Non-contact Shape Measuring System Using an Artificial Neural Network

  • Jeong, Woo-tae;Lee, Myung-Chan;Koh, Duck-joon;Cho, Hyung-suck
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(1)
    • /
    • pp.399-404
    • /
    • 1996
  • We developed a non-contact shape measuring device using computer image processing technology. We present a method of calibrating a CCD video camera and a laser range finder which is the most important step toward making an accurate shape measuring system. An artificial neural network is used for the calibration. Our measurement system is composed of a semiconductor laser. a CCD video camera, a personal computer, and a linear motion table. We think that the developed system could be used for measuring the change in shape of the spent nuclear fuel rod before and after irradiation which is one of the most important tasks for developing a better nuclear fuel. A radiation shield is suggested for the possible utilization of the range finder in radioactive environment.

  • PDF

인공지능을 이용한 휴머노이드 로봇의 자세 최적화 (Optimization of Posture for Humanoid Robot Using Artificial Intelligence)

  • 최국진
    • 한국산업융합학회 논문집
    • /
    • 제22권2호
    • /
    • pp.87-93
    • /
    • 2019
  • This research deals with posture optimization for humanoid robot against external forces using genetic algorithm and neural network. When the robot takes a motion to push an object, the torque of each joint is generated by reaction force at the palm. This study aims to optimize the posture of the humanoid robot that will change this torque. This study finds an optimized posture using a genetic algorithm such that torques are evenly distributed over the all joints. Then, a number of different optimized postures are generated from various the reaction forces at the palm. The data is to be used as training data of MLP(Multi-Layer Perceptron) neural network with BP(Back Propagation) learning algorithm. Humanoid robot can find the optimal posture at different reaction forces in real time using the trained neural network include non-training data.

머신 러닝 알고리즘을 이용한 역방향 깃발의 에너지 하베스팅 효율 예측 (Prediction of Energy Harvesting Efficiency of an Inverted Flag Using Machine Learning Algorithms)

  • 임세환;박성군
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.31-38
    • /
    • 2021
  • The energy harvesting system using an inverted flag is analyzed by using an immersed boundary method to consider the fluid and solid interaction. The inverted flag flutters at a lower critical velocity than a conventional flag. A fluttering motion is classified into straight, symmetric, asymmetric, biased, and over flapping modes. The optimal energy harvesting efficiency is observed at the biased flapping mode. Using the three different machine learning algorithms, i.e., artificial neural network, random forest, support vector regression, the energy harvesting efficiency is predicted by taking bending rigidity, inclination angle, and flapping frequency as input variables. The R2 value of the artificial neural network and random forest algorithms is observed to be more than 0.9.

Design and experimentation of remote driving system for robotic speed sprayer operating in orchard environment

  • Wonpil, Yu;Soohwan Song
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.479-491
    • /
    • 2023
  • The automation of agricultural machines is an irreversible trend considering the demand for improved productivity and lack of labor in handling agricultural tasks. Unstructured working environments and weather often inhibit a seemingly simple task from being fully autonomously performed. In this context, we propose a remote driving system (RDS) to aid agricultural machines designed to operate autonomously. Particularly, we modify a commercial speed sprayer for orchard environments into a robotic speed sprayer to evaluate the proposed RDS's usability and test three sensor configurations in terms of human performance. Furthermore, we propose a confidence error ellipsebased task performance measure to evaluate human performance. In addition, we present field experimental results describing how the sensor configurations affect human performance. We find that a combination of a semiautonomous line tracking device and a wide-angle camera is the most effective for spraying. Finally, we discuss how to improve the proposed RDS in terms of usability and obtain a more accurate measure of human performance.

수중 동작 분석을 위한 웨어러블 디바이스 및 분석 알고리즘 (Wearable devices and analysis algorithms for underwater motion analysis)

  • 최원흠;강경태
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.75-77
    • /
    • 2022
  • 본 논문에서는 복합 개체 센싱(다축 멀티 센서)이 적용되고 수중 다이빙 시 몸통, 핀 부분의 동작 정보를 수집하여 수중 활동 시 발차기, 몸통 회전, 몸통 위치, 이동 속도 등의 움직임 정보를 수집 할 수 있도록 구성하여 다이빙 시 발생되는 다양한 동작 정보를 실시간 수집 할 수 있는 웨어러블 시스템 개발을 제안한다. 다이빙 Suit, 몸에 탈부착이 가능하도록 구성하여 개인의 수중 다이빙 상황을 실시간 정보 수집을 통하여 객관적으로 다이빙 자세, 공기소모와 의 관계 분석, 다이빙 습관 교정, 속도 조절 등 자가 진단 체계화 정보 구축하고, 다이빙 포함 다양한 해양 스포츠의 훈련 이슈는 수중에서 발생되는 문제를 객관화된 정보 없이 강사, 훈련생의 느낌으로만 교정 한다는 의미에서 보다 객관화된 센싱 정보와 복합적으로 수집 분석된 정보를 학습된 정보의 비교분석에 의하여 수중 다이빙의 문제점을 교정 할 수 있다.

  • PDF

Experimental investigating and machine learning prediction of GNP concentration on epoxy composites

  • Hatam K. Kadhom;Aseel J. Mohammed
    • Structural Engineering and Mechanics
    • /
    • 제90권4호
    • /
    • pp.403-415
    • /
    • 2024
  • We looked at how the damping qualities of epoxy composites changed when different amounts of graphite nanoplatelets (GNP) were added, from 0% to 6% by weight. A mix of free and forced vibration tests helped us find the key GNP content that makes the damper ability better the most. We also created a Representative Volume Element (RVE) model to guess how the alloys would behave mechanically and checked these models against testing data. An Artificial Neural Network (ANN) was also used to guess how these compounds would react to motion. With proper hyperparameter tweaking, the ANN model showed good correlation (R2=0.98) with actual data, indicating its ability to predict complex material behavior. Combining these methods shows how GNPs impact epoxy composite mechanical properties and how machine learning might improve material design. We show how adding GNPs to epoxy composites may considerably reduce vibration. These materials may be used in industries that value vibration damping.

인공지능 동작 인식을 활용한 전산화인지훈련이 코로나-19 기간 동안 경도 인지장애 고령자의 인지 기능, 우울, 삶의 질에 미치는 영향: 예비 연구 (Effects of Computerized Cognitive Training Program Using Artificial Intelligence Motion Capture on Cognitive Function, Depression, and Quality of Life in Older Adults With Mild Cognitive Impairment During COVID-19: Pilot Study)

  • 박지현;이경아;이지연;박영욱;박지혁
    • 재활치료과학
    • /
    • 제12권2호
    • /
    • pp.85-98
    • /
    • 2023
  • 목적 : 본 연구의 목적은 경도인지장애 고령자에게 인공지능 동작 인식 기술을 활용한 전산화인지훈련 프로그램을 실시하여 인지 기능, 우울감, 삶의 질을 향상시키고자 한다. 연구방법 : 연구 참여자는 총 7명(실험군 = 4명, 대조군 = 3명)이며 코로나-19 발생 기간인 2021년 10월부터 12월까지 시행되었다. 프로그램은 직접 개발한 인공지능 동작 인식 기술을 활용한 전산화 프로그램 "MOOVE Brain"을 활용했으며 실험군은 한 달 동안 주 3회 30분씩 프로그램을 진행하였고 대조군에게는 중재를 제공하지 않았다. 치료의 전후 평가는 Korean version of the Mini-Mental State Examination-2, Korean version of the Consortium to Establish a Registry for Alzheimer's Disease Assessment Packet for Daily Life Evaluation, Korean version of the short form Geriatric Depression Scale (SGDS-K), 그리고 Geriatric Quality of Life Scale (GQOL)을 이용하였다. 결과 : 치료 전후로 실험군의 주의력 지표인 Stroop Color Test에서 평균 점수가 향상되었고(p = .068), 그룹 간 비교를 했을 때는 실험군의 실행 기능 평가 지표인 Stroop Color/Word Test 평균 점수가 향상되었다(p = .057). 그룹 간의 변화량을 비교했을 때는 실험군의 삶의 질 측정 도구인 GQOL (p = .057)과 우울증 지표인 SGDS-K (p = .057)의 평균 점수가 개선되었다. 하지만 각 영역들은 통계적으로 유의미하지 않았다. 결론 : 본 연구의 결과는 코로나-19로 인해 격리되어 있거나 의료 서비스를 받기 힘든 경도인지장애 고령자의 인지 및 심리 사회적 문제를 해결하는 데 활용될 수 있을 것으로 기대된다.

신경망 기반 비디오 압축을 위한 레이턴트 정보의 방향 이동 및 보상 (Latent Shifting and Compensation for Learned Video Compression)

  • 김영웅;김동현;정세윤;최진수;김휘용
    • 방송공학회논문지
    • /
    • 제27권1호
    • /
    • pp.31-43
    • /
    • 2022
  • 전통적인 비디오 압축은 움직임 예측, 잔차 신호 변환 및 양자화를 통한 하이브리드 압축 방식을 기반으로 지금까지 발전해왔다. 최근 인공 신경망을 통한 기술이 빠르게 발전함에 따라, 인공 신경망 기반의 이미지 압축, 비디오 압축 연구 또한 빠르게 진행되고 있으며, 전통적인 비디오 압축 코덱의 성능과 비교해 높은 경쟁력을 보여주고 있다. 본 논문에서는 이러한 인공 신경망 기반 비디오 압축 모델의 성능을 향상시킬 수 있는 새로운 방법을 제시한다. 기본적으로는 기존 인공 신경망 기반 비디오 압축 모델들이 채택하고 있는 변환 및 복원 신경망과 엔트로피 모델(Entropy model)을 이용한 율-왜곡 최적화(Rate-distortion optimization) 방법을 사용하며, 인코더 측에서 디코더 측으로 압축된 레이턴트 정보(Latent information)를 전송할 때 엔트로피 모델이 추정하기 어려운 정보의 값을 이동시켜 전송할 비트량을 감소시키고, 손실된 정보를 추가로 전송함으로써 손실된 정보에 대한 왜곡을 보정한다. 이러한 방법을 통해 기존의 인공 신경망 기반 비디오 압축 기술인 MFVC(Motion Free Video Compression) 방법을 개선하였으며, 실험 결과를 통해 H.264를 기준으로 계산한 BDBR (Bjøntegaard Delta-Bitrate) 수치(%)로 MFVC(-14%) 보다 두 배 가까운 비트량 감축(-27%)이 가능함을 입증하였다. 제안된 방법은 MFVC 뿐 아니라, 레이턴트 정보와 엔트로피 모델을 사용하는 신경망 기반 이미지 또는 비디오 압축 기술에 광범위하게 적용할 수 있다는 장점이 있다.