• Title/Summary/Keyword: Artificial life algorithm

Search Result 106, Processing Time 0.021 seconds

An Improved Reinforcement Learning Technique for Mission Completion (임무수행을 위한 개선된 강화학습 방법)

  • 권우영;이상훈;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.533-539
    • /
    • 2003
  • Reinforcement learning (RL) has been widely used as a learning mechanism of an artificial life system. However, RL usually suffers from slow convergence to the optimum state-action sequence or a sequence of stimulus-response (SR) behaviors, and may not correctly work in non-Markov processes. In this paper, first, to cope with slow-convergence problem, if some state-action pairs are considered as disturbance for optimum sequence, then they no to be eliminated in long-term memory (LTM), where such disturbances are found by a shortest path-finding algorithm. This process is shown to let the system get an enhanced learning speed. Second, to partly solve a non-Markov problem, if a stimulus is frequently met in a searching-process, then the stimulus will be classified as a sequential percept for a non-Markov hidden state. And thus, a correct behavior for a non-Markov hidden state can be learned as in a Markov environment. To show the validity of our proposed learning technologies, several simulation result j will be illustrated.

Autonomous Animated Robots

  • Yamamoto, Masahito;Iwadate, Kenji;Ooe, Ryosuke;Suzuki, Ikuo;Furukawa, Masashi
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.85-91
    • /
    • 2010
  • In this paper, we demonstrate an autonomous design of motion control of virtual creatures (called animated robots in this paper) and develop modeling software for animated robots. An animated robot can behave autonomously by using its own sensors and controllers on three-dimensional physically modeled environment. The developed software can enable us to execute the simulation of animated robots on physical environment at any time during the modeling process. In order to simulate more realistic world, an approximate fluid environment model with low computational costs is presented. It is shown that a combinatorial use of neural network implementation for controllers and the genetic algorithm (GA) or the particle swarm optimization (PSO) is effective for emerging more realistic autonomous behaviours of animated robots.

Evaluation of Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means based ANFIS System in Diagnosis of Alzheimer

  • Kour, Haneet;Manhas, Jatinder;Sharma, Vinod
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.87-90
    • /
    • 2019
  • Machine learning techniques have been applied in almost all the domains of human life to aid and enhance the problem solving capabilities of the system. The field of medical science has improved to a greater extent with the advent and application of these techniques. Efficient expert systems using various soft computing techniques like artificial neural network, Fuzzy Logic, Genetic algorithm, Hybrid system, etc. are being developed to equip medical practitioner with better and effective diagnosing capabilities. In this paper, a comparative study to evaluate the predictive performance of subtractive clustering based ANFIS hybrid system (SCANFIS) with Fuzzy C-Means (FCM) based ANFIS system (FCMANFIS) for Alzheimer disease (AD) has been taken. To evaluate the performance of these two systems, three parameters i.e. root mean square error (RMSE), prediction accuracy and precision are implemented. Experimental results demonstrated that the FCMANFIS model produce better results when compared to SCANFIS model in predictive analysis of Alzheimer disease (AD).

A Hybrid Routing Protocol Based on Bio-Inspired Methods in a Mobile Ad Hoc Network

  • Alattas, Khalid A
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.207-213
    • /
    • 2021
  • Networks in Mobile ad hoc contain distribution and do not have a predefined structure which practically means that network modes can play the role of being clients or servers. The routing protocols used in mobile Ad-hoc networks (MANETs) are characterized by limited bandwidth, mobility, limited power supply, and routing protocols. Hybrid routing protocols solve the delay problem of reactive routing protocols and the routing overhead of proactive routing protocols. The Ant Colony Optimization (ACO) algorithm is used to solve other real-life problems such as the travelling salesman problem, capacity planning, and the vehicle routing challenge. Bio-inspired methods have probed lethal in helping to solve the problem domains in these networks. Hybrid routing protocols combine the distance vector routing protocol (DVRP) and the link-state routing protocol (LSRP) to solve the routing problem.

Selecting Machine Learning Model Based on Natural Language Processing for Shanghanlun Diagnostic System Classification (자연어 처리 기반 『상한론(傷寒論)』 변병진단체계(辨病診斷體系) 분류를 위한 기계학습 모델 선정)

  • Young-Nam Kim
    • 대한상한금궤의학회지
    • /
    • v.14 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • Objective : The purpose of this study is to explore the most suitable machine learning model algorithm for Shanghanlun diagnostic system classification using natural language processing (NLP). Methods : A total of 201 data items were collected from 『Shanghanlun』 and 『Clinical Shanghanlun』, 'Taeyangbyeong-gyeolhyung' and 'Eumyangyeokchahunobokbyeong' were excluded to prevent oversampling or undersampling. Data were pretreated using a twitter Korean tokenizer and trained by logistic regression, ridge regression, lasso regression, naive bayes classifier, decision tree, and random forest algorithms. The accuracy of the models were compared. Results : As a result of machine learning, ridge regression and naive Bayes classifier showed an accuracy of 0.843, logistic regression and random forest showed an accuracy of 0.804, and decision tree showed an accuracy of 0.745, while lasso regression showed an accuracy of 0.608. Conclusions : Ridge regression and naive Bayes classifier are suitable NLP machine learning models for the Shanghanlun diagnostic system classification.

  • PDF

A Study on the Impact of Artificial Intelligence on Decision Making : Focusing on Human-AI Collaboration and Decision-Maker's Personality Trait (인공지능이 의사결정에 미치는 영향에 관한 연구 : 인간과 인공지능의 협업 및 의사결정자의 성격 특성을 중심으로)

  • Lee, JeongSeon;Suh, Bomil;Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.231-252
    • /
    • 2021
  • Artificial intelligence (AI) is a key technology that will change the future the most. It affects the industry as a whole and daily life in various ways. As data availability increases, artificial intelligence finds an optimal solution and infers/predicts through self-learning. Research and investment related to automation that discovers and solves problems on its own are ongoing continuously. Automation of artificial intelligence has benefits such as cost reduction, minimization of human intervention and the difference of human capability. However, there are side effects, such as limiting the artificial intelligence's autonomy and erroneous results due to algorithmic bias. In the labor market, it raises the fear of job replacement. Prior studies on the utilization of artificial intelligence have shown that individuals do not necessarily use the information (or advice) it provides. Algorithm error is more sensitive than human error; so, people avoid algorithms after seeing errors, which is called "algorithm aversion." Recently, artificial intelligence has begun to be understood from the perspective of the augmentation of human intelligence. We have started to be interested in Human-AI collaboration rather than AI alone without human. A study of 1500 companies in various industries found that human-AI collaboration outperformed AI alone. In the medicine area, pathologist-deep learning collaboration dropped the pathologist cancer diagnosis error rate by 85%. Leading AI companies, such as IBM and Microsoft, are starting to adopt the direction of AI as augmented intelligence. Human-AI collaboration is emphasized in the decision-making process, because artificial intelligence is superior in analysis ability based on information. Intuition is a unique human capability so that human-AI collaboration can make optimal decisions. In an environment where change is getting faster and uncertainty increases, the need for artificial intelligence in decision-making will increase. In addition, active discussions are expected on approaches that utilize artificial intelligence for rational decision-making. This study investigates the impact of artificial intelligence on decision-making focuses on human-AI collaboration and the interaction between the decision maker personal traits and advisor type. The advisors were classified into three types: human, artificial intelligence, and human-AI collaboration. We investigated perceived usefulness of advice and the utilization of advice in decision making and whether the decision-maker's personal traits are influencing factors. Three hundred and eleven adult male and female experimenters conducted a task that predicts the age of faces in photos and the results showed that the advisor type does not directly affect the utilization of advice. The decision-maker utilizes it only when they believed advice can improve prediction performance. In the case of human-AI collaboration, decision-makers higher evaluated the perceived usefulness of advice, regardless of the decision maker's personal traits and the advice was more actively utilized. If the type of advisor was artificial intelligence alone, decision-makers who scored high in conscientiousness, high in extroversion, or low in neuroticism, high evaluated the perceived usefulness of the advice so they utilized advice actively. This study has academic significance in that it focuses on human-AI collaboration that the recent growing interest in artificial intelligence roles. It has expanded the relevant research area by considering the role of artificial intelligence as an advisor of decision-making and judgment research, and in aspects of practical significance, suggested views that companies should consider in order to enhance AI capability. To improve the effectiveness of AI-based systems, companies not only must introduce high-performance systems, but also need employees who properly understand digital information presented by AI, and can add non-digital information to make decisions. Moreover, to increase utilization in AI-based systems, task-oriented competencies, such as analytical skills and information technology capabilities, are important. in addition, it is expected that greater performance will be achieved if employee's personal traits are considered.

Realization of the Growth and Behavior of a Artificial Life based on User′s Act (사용자 행동에 기반한 인공생명체의 성장과 반응 구현)

  • Chung, Jin-Wook;Kim, Do-Wan;Kwon, Min-Su;Kang, Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1303-1306
    • /
    • 2003
  • In this paper, In this paper, we modeled a virtual life(VL) that react to the user's action according to its own behavioral characteristics and grows itself. We established some conditions with which such a VL is designed. Genetic Algorithm is used for the growth process that changes the VL's properties. In this process, the parameter values of the VL's properties are encoded as one chromosome, and the GA operations change this chromosome. The VL's reaction to the user's action is determined by these properties as well as the general expectation of each reaction. These properties are evaluated through 5 fitness measures so as to deal with multi-objective criteria. Here, we present the simulation of the growth process, and show some experimental results.

  • PDF

The Rated Self: Credit Rating and the Outsoursing of Human Judgment (평가된 자아: 신용평가와 도덕적, 경제적 가치 평가의 외주화)

  • Yi, Doogab
    • Journal of Science and Technology Studies
    • /
    • v.19 no.1
    • /
    • pp.91-135
    • /
    • 2019
  • As we live a life increasingly mediated by computers, we often outsource our critical judgments to artificial intelligence(AI)-based algorithms. Most of us have become quite dependent upon algorithms: computers are now recommending what we see, what we buy, and who we befriend with. What happens to our lives and identities when we use statistical models, algorithms, AI, to make a decision for us? This paper is a preliminary attempt to chronicle a historical trajectory of judging people's economic and moral worth, namely the history of credit-rating within the context of the history of capitalism. More importantly this paper will critically review the history of credit-rating from its earlier conception to the age of big data and algorithmic evaluation, in order to ask questions about what the political implications of outsourcing our judgments to computer models and artificial intelligence would be. Some of the questions I would like to ask in this paper are: by whom and for what purposes is the computer and artificial intelligence encroached into the area of judging people's economic and moral worth? In what ways does the evolution of capitalism constitute a new mode of judging people's financial and personal identity, namely the rated self? What happens in our self-conception and identity when we are increasingly classified, evaluated, and judged by computer models and artificial intelligence? This paper ends with a brief discussion on the political implications of the outsourcing of human judgment to artificial intelligence, and some of the analytic frameworks for further political actions.

Optimization of the Groove Depth of a Sealing-type Abutment for Implant Using a Genetic Algorithm (유전자알고리즘을 이용한 임플란트용 실링어버트먼트의 홈 깊이 최적화에 관한 연구)

  • Lee, Hyeon-Yeol;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.24-30
    • /
    • 2018
  • Dental implants are currently widely used as artificial teeth due to their good chewing performance and long life cycle. A dental implant consists of an abutment as the upper part and a fixture as the lower part. When chewing forces are repeatedly applied to a dental implant, gap at the interface surface between the abutment and the fixture is often occurred, and results in some deteriorations such as loosening of fastening screw, dental retraction and fixture fracture. To cope with such problems, a sealing-type abutment having a number of grooves along the conical-surface circumference was previously developed, and shows better sealing performance than the conventional one. This study carries out optimization of the groove shape by genetic algorithm(GA) as well as structural analysis in consideration of external chewing force and pretension between the abutment and the fixture. The overall optimization system consists of two subsystems; the one is the genetic algorithm with MATLAB, and the other is the structural analysis with ANSYS. Two subsystems transmit and receive the relevant data with each other throughout the optimization processes. The optimization result is then compared with that of the conventional one with respect to the contact pressure and the maximum stress. The result shows that the optimized model gives better sealing performance than the conventional sealing abutment.

Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm (기계학습 알고리즘을 이용한 스마트 온실 내부온도 예측 모델 개발 및 검증)

  • Oh, Kwang Cheol;Kim, Seok Jun;Park, Sun Yong;Lee, Chung Geon;Cho, La Hoon;Jeon, Young Kwang;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.152-162
    • /
    • 2022
  • This study developed simulation model for predicting the greenhouse interior environment using artificial intelligence machine learning techniques. Various methods have been studied to predict the internal environment of the greenhouse system. But the traditional simulation analysis method has a problem of low precision due to extraneous variables. In order to solve this problem, we developed a model for predicting the temperature inside the greenhouse using machine learning. Machine learning models are developed through data collection, characteristic analysis, and learning, and the accuracy of the model varies greatly depending on parameters and learning methods. Therefore, an optimal model derivation method according to data characteristics is required. As a result of the model development, the model accuracy increased as the parameters of the hidden unit increased. Optimal model was derived from the GRU algorithm and hidden unit 6 (r2 = 0.9848 and RMSE = 0.5857℃). Through this study, it was confirmed that it is possible to develop a predictive model for the temperature inside the greenhouse using data outside the greenhouse. In addition, it was confirmed that application and comparative analysis were necessary for various greenhouse data. It is necessary that research for development environmental control system by improving the developed model to the forecasting stage.