• Title/Summary/Keyword: Artificial intelligence program

Search Result 332, Processing Time 0.037 seconds

The Meta-Analysis on Effects of Living Lab-Based Education (리빙랩 기반 교육 프로그램의 효과에 대한 메타분석)

  • So Hee Yoon
    • Journal of Practical Engineering Education
    • /
    • v.14 no.3
    • /
    • pp.505-512
    • /
    • 2022
  • The purpose of this study is to synthesize effects of the living lab-based education through meta-analysis. Seven primary studies reporting the effect of living lab-based education were carefully selected for data analysis. Research questions are as follows. First, what is the overall effect size of the living lab-based education? The overall effect size refers to the effect on the cognitive and affective domains. Second, what is the effect size of the living lab-based education according to categorical variables? Categorical variables are outcome characteristics, study characteristics, and design characteristics. Results are summarized as follows. First, the overall effect size of living lab-based education was 0.347. Second, the effect size according to the cognitive domain was 1.244 for information process, 0.593 for communication, 0.261 for problem solving, and 0.26 for creativity. Third, the effect size according to subject area was shown in the order of electrical and electronic engineering 1.146, technology and home economics 0.489, artificial intelligence 0.379, and practical arts 0.168. Fourth, the effect size according to school level was 1.058 for high school, 0.312 for middle school, and 0.217 for elementary school. Fifth, the effect size by grade level was 0.295 when two or more grades were integrated and 0.294 for a single grade.

Methods for Quantitative Disassembly and Code Establishment of CBS in BIM for Program and Payment Management (BIM의 공정과 기성 관리 적용을 위한 CBS 수량 분개 및 코드 정립 방안)

  • Hando Kim;Jeongyong Nam;Yongju Kim;Inhye Ryu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.381-389
    • /
    • 2023
  • One of the crucial components in building information modeling (BIM) is data. To systematically manage these data, various research studies have focused on the creation of object breakdown structures and property sets. Specifically, crucial data for managing programs and payments involves work breakdown structures (WBSs) and cost breakdown structures (CBSs), which are indispensable for mapping BIM objects. Achieving this requires disassembling CBS quantities based on 3D objects and WBS. However, this task is highly tedious owing to the large volume of CBS and divergent coding practices employed by different organizations. Manual processes, such as those based on Excel, become nearly impossible for such extensive tasks. In response to the challenge of computing quantities that are difficult to derive from BIM objects, this study presents methods for disassembling length-based quantities, incorporating significant portions of the bill of quantities (BOQs). The proposed approach recommends suitable CBS by leveraging the accumulated history of WBS-CBS mapping databases. Additionally, it establishes a unified CBS code, facilitating the effective operation of CBS databases.

An Investigation Into the Effects of AI-Based Chemistry I Class Using Classification Models (분류 모델을 활용한 AI 기반 화학 I 수업의 효과에 대한 연구)

  • Heesun Yang;Seonghyeok Ahn;Seung-Hyun Kim;Seong-Joo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.3
    • /
    • pp.160-175
    • /
    • 2024
  • The purpose of this study is to examine the effects of a Chemistry I class based on an artificial intelligence (AI) classification model. To achieve this, the research investigated the development and application of a class utilizing an AI classification model in Chemistry I classes conducted at D High School in Gyeongbuk during the first semester of 2023. After selecting the curriculum content and AI tools, and determining the curriculum-AI integration education model as well as AI hardware and software, we developed detailed activities for the program and applied them in actual classes. Following the implementation of the classes, it was confirmed that students' self-efficacy improved in three aspects: chemistry concept formation, AI value perception, and AI-based maker competency. Specifically, the chemistry classes based on text and image classification models had a positive impact on students' self-efficacy for chemistry concept formation, enhanced students' perception of AI value and interest, and contributed to improving students' AI and physical computing abilities. These results demonstrate the positive impact of the Chemistry I class based on an AI classification model on students, providing evidence of its utility in educational settings.

Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation

  • Seul Bi Lee;Youngtaek Hong;Yeon Jin Cho;Dawun Jeong;Jina Lee;Soon Ho Yoon;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon
    • Korean Journal of Radiology
    • /
    • v.24 no.4
    • /
    • pp.294-304
    • /
    • 2023
  • Objective: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. Materials and Methods: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume. Results: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original, -0.006-0.964 vs. standardized, 0.990-0.998). Conclusion: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.

Prognostic Value of Sarcopenia and Myosteatosis in Patients with Resectable Pancreatic Ductal Adenocarcinoma

  • Dong Wook Kim;Hyemin Ahn;Kyung Won Kim;Seung Soo Lee;Hwa Jung Kim;Yousun Ko;Taeyong Park;Jeongjin Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.11
    • /
    • pp.1055-1066
    • /
    • 2022
  • Objective: The clinical relevance of myosteatosis has not been well evaluated in patients with pancreatic ductal adenocarcinoma (PDAC), although sarcopenia has been extensively researched. Therefore, we evaluated the prognostic value of muscle quality, including myosteatosis, in patients with resectable PDAC treated surgically. Materials and Methods: We retrospectively evaluated 347 patients with resectable PDAC who underwent curative surgery (mean age ± standard deviation, 63.6 ± 9.6 years; 202 male). Automatic muscle segmentation was performed on preoperative computed tomography (CT) images using an artificial intelligence program. A single axial image of the portal phase at the inferior endplate level of the L3 vertebra was used for analysis in each patient. Sarcopenia was evaluated using the skeletal muscle index, calculated as the skeletal muscle area (SMA) divided by the height squared. The mean SMA attenuation was used to evaluate myosteatosis. Diagnostic cutoff values for sarcopenia and myosteatosis were devised using the Contal and O'Quigley methods, and patients were classified according to normal (nMT), sarcopenic (sMT), myosteatotic (mMT), or combined (cMT) muscle quality types. Multivariable Cox regression analyses were conducted to assess the effects of muscle type on the overall survival (OS) and recurrence-free survival (RFS) after surgery. Results: Eighty-four (24.2%), 73 (21.0%), 75 (21.6%), and 115 (33.1%) patients were classified as having nMT, sMT, mMT, and cMT, respectively. Compared to nMT, mMT and cMT were significantly associated with poorer OS, with hazard ratios (HRs) of 1.49 (95% confidence interval, 1.00-2.22) and 1.68 (1.16-2.43), respectively, while sMT was not (HR of 1.40 [0.94-2.10]). Only mMT was significantly associated with poorer RFS, with an HR of 1.59 (1.07-2.35), while sMT and cMT were not. Conclusion: Myosteatosis was associated with poor OS and RFS in patients with resectable PDAC who underwent curative surgery.

Enhancing Empathic Reasoning of Large Language Models Based on Psychotherapy Models for AI-assisted Social Support (인공지능 기반 사회적 지지를 위한 대형언어모형의 공감적 추론 향상: 심리치료 모형을 중심으로)

  • Yoon Kyung Lee;Inju Lee;Minjung Shin;Seoyeon Bae;Sowon Hahn
    • Korean Journal of Cognitive Science
    • /
    • v.35 no.1
    • /
    • pp.23-48
    • /
    • 2024
  • Building human-aligned artificial intelligence (AI) for social support remains challenging despite the advancement of Large Language Models. We present a novel method, the Chain of Empathy (CoE) prompting, that utilizes insights from psychotherapy to induce LLMs to reason about human emotional states. This method is inspired by various psychotherapy approaches-Cognitive-Behavioral Therapy (CBT), Dialectical Behavior Therapy (DBT), Person-Centered Therapy (PCT), and Reality Therapy (RT)-each leading to different patterns of interpreting clients' mental states. LLMs without CoE reasoning generated predominantly exploratory responses. However, when LLMs used CoE reasoning, we found a more comprehensive range of empathic responses aligned with each psychotherapy model's different reasoning patterns. For empathic expression classification, the CBT-based CoE resulted in the most balanced classification of empathic expression labels and the text generation of empathic responses. However, regarding emotion reasoning, other approaches like DBT and PCT showed higher performance in emotion reaction classification. We further conducted qualitative analysis and alignment scoring of each prompt-generated output. The findings underscore the importance of understanding the emotional context and how it affects human-AI communication. Our research contributes to understanding how psychotherapy models can be incorporated into LLMs, facilitating the development of context-aware, safe, and empathically responsive AI.

Basic Research on the Possibility of Developing a Landscape Perceptual Response Prediction Model Using Artificial Intelligence - Focusing on Machine Learning Techniques - (인공지능을 활용한 경관 지각반응 예측모델 개발 가능성 기초연구 - 머신러닝 기법을 중심으로 -)

  • Kim, Jin-Pyo;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.70-82
    • /
    • 2023
  • The recent surge of IT and data acquisition is shifting the paradigm in all aspects of life, and these advances are also affecting academic fields. Research topics and methods are being improved through academic exchange and connections. In particular, data-based research methods are employed in various academic fields, including landscape architecture, where continuous research is needed. Therefore, this study aims to investigate the possibility of developing a landscape preference evaluation and prediction model using machine learning, a branch of Artificial Intelligence, reflecting the current situation. To achieve the goal of this study, machine learning techniques were applied to the landscaping field to build a landscape preference evaluation and prediction model to verify the simulation accuracy of the model. For this, wind power facility landscape images, recently attracting attention as a renewable energy source, were selected as the research objects. For analysis, images of the wind power facility landscapes were collected using web crawling techniques, and an analysis dataset was built. Orange version 3.33, a program from the University of Ljubljana was used for machine learning analysis to derive a prediction model with excellent performance. IA model that integrates the evaluation criteria of machine learning and a separate model structure for the evaluation criteria were used to generate a model using kNN, SVM, Random Forest, Logistic Regression, and Neural Network algorithms suitable for machine learning classification models. The performance evaluation of the generated models was conducted to derive the most suitable prediction model. The prediction model derived in this study separately evaluates three evaluation criteria, including classification by type of landscape, classification by distance between landscape and target, and classification by preference, and then synthesizes and predicts results. As a result of the study, a prediction model with a high accuracy of 0.986 for the evaluation criterion according to the type of landscape, 0.973 for the evaluation criterion according to the distance, and 0.952 for the evaluation criterion according to the preference was developed, and it can be seen that the verification process through the evaluation of data prediction results exceeds the required performance value of the model. As an experimental attempt to investigate the possibility of developing a prediction model using machine learning in landscape-related research, this study was able to confirm the possibility of creating a high-performance prediction model by building a data set through the collection and refinement of image data and subsequently utilizing it in landscape-related research fields. Based on the results, implications, and limitations of this study, it is believed that it is possible to develop various types of landscape prediction models, including wind power facility natural, and cultural landscapes. Machine learning techniques can be more useful and valuable in the field of landscape architecture by exploring and applying research methods appropriate to the topic, reducing the time of data classification through the study of a model that classifies images according to landscape types or analyzing the importance of landscape planning factors through the analysis of landscape prediction factors using machine learning.

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.

A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation (IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로)

  • Kang, Ryeo-Eun;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.169-196
    • /
    • 2017
  • The fourth industrial revolution represents a revolutionary change in the business environment and its ecosystem, which is a fusion of Information Technology (IT) and other industries. In line with these recent changes, the Ministry of Employment and Labor of South Korea announced 'the Fourth Industrial Revolution Leader Training Program,' which includes five key support areas such as (1) smart manufacturing, (2) Internet of Things (IoT), (3) big data including Artificial Intelligence (AI), (4) information security, and (5) bio innovation. Based on this program, we can get a glimpse of the South Korean government's efforts and willingness to emit leading human resource with advanced IT knowledge in various fusion technology-related and newly emerging industries. On the other hand, in order to nurture excellent IT manpower in preparation for the fourth industrial revolution, the role of educational institutions capable of providing high quality IT education services is most of importance. However, these days, most IT educational institutions have had difficulties in providing customized IT education services that meet the needs of consumers (i.e., learners), without breaking away from the traditional framework of providing supplier-oriented education services. From previous studies, it has been found that the provision of customized education services centered on learners leads to high satisfaction of learners, and that higher satisfaction increases not only task performance and the possibility of business application but also learners' recommendation intention. However, since research has not yet been conducted in a comprehensive way that consider both antecedent and consequent factors of the learner's satisfaction, more empirical research on this is highly desirable. With the advent of the fourth industrial revolution, a rising interest in various convergence technologies utilizing information technology (IT) has brought with the growing realization of the important role played by IT-related education services. However, research on the role of IT education service quality in the context of IT education is relatively scarce in spite of the fact that research on general education service quality and satisfaction has been actively conducted in various contexts. In this study, therefore, the five dimensions of IT education service quality (i.e., tangibles, reliability, responsiveness, assurance, and empathy) are derived from the context of IT education, based on the SERVPERF model and related previous studies. In addition, the effects of these detailed IT education service quality factors on learners' educational satisfaction and their work application/recommendation intentions are examined. Furthermore, the moderating roles of learner position (i.e., practitioner group vs. manager group) and participation motivation (i.e., voluntary participation vs. involuntary participation) in relationships between IT education service quality factors and learners' educational satisfaction, work application intention, and recommendation intention are also investigated. In an analysis using the structural equation model (SEM) technique based on a questionnaire given to 203 participants of IT education programs in an 'M' IT educational institution in Seoul, South Korea, tangibles, reliability, and assurance were found to have a significant effect on educational satisfaction. This educational satisfaction was found to have a significant effect on both work application intention and recommendation intention. Moreover, it was discovered that learner position and participation motivation have a partial moderating impact on the relationship between IT education service quality factors and educational satisfaction. This study holds academic implications in that it is one of the first studies to apply the SERVPERF model (rather than the SERVQUAL model, which has been widely adopted by prior studies) is to demonstrate the influence of IT education service quality on learners' educational satisfaction, work application intention, and recommendation intention in an IT education environment. The results of this study are expected to provide practical guidance for IT education service providers who wish to enhance learners' educational satisfaction and service management efficiency.

Simulation and Post-representation: a study of Algorithmic Art (시뮬라시옹과 포스트-재현 - 알고리즘 아트를 중심으로)

  • Lee, Soojin
    • 기호학연구
    • /
    • no.56
    • /
    • pp.45-70
    • /
    • 2018
  • Criticism of the postmodern philosophy of the system of representation, which has continued since the Renaissance, is based on a critique of the dichotomy that separates the subjects and objects and the environment from the human being. Interactivity, highlighted in a series of works emerging as postmodern trends in the 1960s, was transmitted to an interactive aspect of digital art in the late 1990s. The key feature of digital art is the possibility of infinite variations reflecting unpredictable changes based on public participation on the spot. In this process, the importance of computer programs is highlighted. Instead of using the existing program as it is, more and more artists are creating and programming their own algorithms or creating unique algorithms through collaborations with programmers. We live in an era of paradigm shift in which programming itself must be considered as a creative act. Simulation technology and VR technology draw attention as a technique to represent the meaning of reality. Simulation technology helps artists create experimental works. In fact, Baudrillard's concept of Simulation defines the other reality that has nothing to do with our reality, rather than a reality that is extremely representative of our reality. His book Simulacra and Simulation refers to the existence of a reality entirely different from the traditional concept of reality. His argument does not concern the problems of right and wrong. There is no metaphysical meaning. Applying the concept of simulation to algorithmic art, the artist models the complex attributes of reality in the digital system. And it aims to build and integrate internal laws that structure and activate the world (specific or individual), that is to say, simulate the world. If the images of the traditional order correspond to the reproduction of the real world, the synthesized images of algorithmic art and simulated space-time are the forms of art that facilitate the experience. The moment of seeing and listening to the work of Ian Cheng presented in this article is a moment of personal experience and the perception is made at that time. It is not a complete and closed process, but a continuous and changing process. It is this active and situational awareness that is required to the audience for the comprehension of post-representation's forms.