• Title/Summary/Keyword: Artificial intelligence model

Search Result 1,777, Processing Time 0.03 seconds

Data Standardization Method for Quality Management of Cloud Computing Services using Artificial Intelligence (인공지능을 활용한 클라우드 컴퓨팅 서비스의 품질 관리를 위한 데이터 정형화 방법)

  • Jung, Hyun Chul;Seo, Kwang-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.133-137
    • /
    • 2022
  • In the smart industry where data plays an important role, cloud computing is being used in a complex and advanced way as a convergence technology because it has and fits well with its strengths. Accordingly, in order to utilize artificial intelligence rather than human beings for quality management of cloud computing services, a consistent standardization method of data collected from various nodes in various areas is required. Therefore, this study analyzed technologies and cases for incorporating artificial intelligence into specific services through previous studies, suggested a plan to use artificial intelligence to comprehensively standardize data in quality management of cloud computing services, and then verified it through case studies. It can also be applied to the artificial intelligence learning model that analyzes the risks arising from the data formalization method presented in this study and predicts the quality risks that are likely to occur. However, there is also a limitation that separate policy development for service quality management needs to be supplemented.

Study on Machine Learning Techniques for Malware Classification and Detection

  • Moon, Jaewoong;Kim, Subin;Song, Jaeseung;Kim, Kyungshin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4308-4325
    • /
    • 2021
  • The importance and necessity of artificial intelligence, particularly machine learning, has recently been emphasized. In fact, artificial intelligence, such as intelligent surveillance cameras and other security systems, is used to solve various problems or provide convenience, providing solutions to problems that humans traditionally had to manually deal with one at a time. Among them, information security is one of the domains where the use of artificial intelligence is especially needed because the frequency of occurrence and processing capacity of dangerous codes exceeds the capabilities of humans. Therefore, this study intends to examine the definition of artificial intelligence and machine learning, its execution method, process, learning algorithm, and cases of utilization in various domains, particularly the cases and contents of artificial intelligence technology used in the field of information security. Based on this, this study proposes a method to apply machine learning technology to the method of classifying and detecting malware that has rapidly increased in recent years. The proposed methodology converts software programs containing malicious codes into images and creates training data suitable for machine learning by preparing data and augmenting the dataset. The model trained using the images created in this manner is expected to be effective in classifying and detecting malware.

A study on Improving the Performance of Anti - Drone Systems using AI (인공지능(AI)을 활용한 드론방어체계 성능향상 방안에 관한 연구)

  • Hae Chul Ma;Jong Chan Moon;Jae Yong Park;Su Han Lee;Hyuk Jin Kwon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.126-134
    • /
    • 2023
  • Drones are emerging as a new security threat, and the world is working to reduce them. Detection and identification are the most difficult and important parts of the anti-drone systems. Existing detection and identification methods each have their strengths and weaknesses, so complementary operations are required. Detection and identification performance in anti-drone systems can be improved through the use of artificial intelligence. This is because artificial intelligence can quickly analyze differences smaller than humans. There are three ways to utilize artificial intelligence. Through reinforcement learning-based physical control, noise and blur generated when the optical camera tracks the drone may be reduced, and tracking stability may be improved. The latest NeRF algorithm can be used to solve the problem of lack of enemy drone data. It is necessary to build a data network to utilize artificial intelligence. Through this, data can be efficiently collected and managed. In addition, model performance can be improved by regularly generating artificial intelligence learning data.

Stock prediction analysis through artificial intelligence using big data (빅데이터를 활용한 인공지능 주식 예측 분석)

  • Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1435-1440
    • /
    • 2021
  • With the advent of the low interest rate era, many investors are flocking to the stock market. In the past stock market, people invested in stocks labor-intensively through company analysis and their own investment techniques. However, in recent years, stock investment using artificial intelligence and data has been widely used. The success rate of stock prediction through artificial intelligence is currently not high, so various artificial intelligence models are trying to increase the stock prediction rate. In this study, we will look at various artificial intelligence models and examine the pros and cons and prediction rates between each model. This study investigated as stock prediction programs using artificial intelligence artificial neural network (ANN), deep learning or hierarchical learning (DNN), k-nearest neighbor algorithm(k-NN), convolutional neural network (CNN), recurrent neural network (RNN), and LSTMs.

Identification Systems of Fake News Contents on Artificial Intelligence & Bigdata

  • KANG, Jangmook;LEE, Sangwon
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.122-130
    • /
    • 2021
  • This study is about an Artificial Intelligence-based fake news identification system and its methods to determine the authenticity of content distributed over the Internet. Among the news we encounter is news that an individual or organization intentionally writes something that is not true to achieve a particular purpose, so-called fake news. In this study, we intend to design a system that uses Artificial Intelligence techniques to identify fake content that exists within the news. The proposed identification model will propose a method of extracting multiple unit factors from the target content. Through this, attempts will be made to classify unit factors into different types. In addition, the design of the preprocessing process will be carried out to parse only the necessary information by analyzing the unit factor. Based on these results, we will design the part where the unit fact is analyzed using the deep learning prediction model as a predetermined unit. The model will also include a design for a database that determines the degree of fake news in the target content and stores the information in the identified unit factor through the analyzed unit factor.

CRFNet: Context ReFinement Network used for semantic segmentation

  • Taeghyun An;Jungyu Kang;Dooseop Choi;Kyoung-Wook Min
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.822-835
    • /
    • 2023
  • Recent semantic segmentation frameworks usually combine low-level and high-level context information to achieve improved performance. In addition, postlevel context information is also considered. In this study, we present a Context ReFinement Network (CRFNet) and its training method to improve the semantic predictions of segmentation models of the encoder-decoder structure. Our study is based on postprocessing, which directly considers the relationship between spatially neighboring pixels of a label map, such as Markov and conditional random fields. CRFNet comprises two modules: a refiner and a combiner that, respectively, refine the context information from the output features of the conventional semantic segmentation network model and combine the refined features with the intermediate features from the decoding process of the segmentation model to produce the final output. To train CRFNet to refine the semantic predictions more accurately, we proposed a sequential training scheme. Using various backbone networks (ENet, ERFNet, and HyperSeg), we extensively evaluated our model on three large-scale, real-world datasets to demonstrate the effectiveness of our approach.

Application of Artificial Intelligence for the Management of Oral Diseases

  • Lee, Yeon-Hee
    • Journal of Oral Medicine and Pain
    • /
    • v.47 no.2
    • /
    • pp.107-108
    • /
    • 2022
  • Artificial intelligence (AI) refers to the use of machines to mimic intelligent human behavior. It involves interactions with humans in clinical settings, and augmented intelligence is considered as a cognitive extension of AI. The importance of AI in healthcare and medicine has been emphasized in recent studies. Machine learning models, such as genetic algorithms, artificial neural networks (ANNs), and fuzzy logic, can learn and examine data to execute various functions. Among them, ANN is the most popular model for diagnosis based on image data. AI is rapidly becoming an adjunct to healthcare professionals and is expected to be human-independent in the near future. The introduction of AI to the diagnosis and treatment of oral diseases worldwide remains in the preliminary stage. AI-based or assisted diagnosis and decision-making will increase the accuracy of the diagnosis and render treatment more precise and personalized. Therefore, dental professionals must actively initiate and lead the development of AI, even if they are unfamiliar with it.

A Study of Artificial Intelligence Learning Model to Support Military Decision Making: Focused on the Wargame Model (전술제대 결심수립 지원 인공지능 학습방법론 연구: 워게임 모델을 중심으로)

  • Kim, Jun-Sung;Kim, Young-Soo;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • Commander and staffs on the battlefield are aware of the situation and, based on the results, they perform military activities through their military decisions. Recently, with the development of information technology, the demand for artificial intelligence to support military decisions has increased. It is essential to identify, collect, and pre-process the data set for reinforcement learning to utilize artificial intelligence. However, data on enemies lacking in terms of accuracy, timeliness, and abundance is not suitable for use as AI learning data, so a training model is needed to collect AI learning data. In this paper, a methodology for learning artificial intelligence was presented using the constructive wargame model exercise data. First, the role and scope of artificial intelligence to support the commander and staff in the military decision-making process were specified, and to train artificial intelligence according to the role, learning data was identified in the Chang-Jo 21 model exercise data and the learning results were simulated. The simulation data set was created as imaginary sample data, and the doctrine of ROK Army, which is restricted to disclosure, was utilized with US Army's doctrine that can be collected on the Internet.

An Artificial Intelligent based Learning Model for BIM Elements Usage (건축 부재 사용량 예측을 위한 인공지능 학습 모델)

  • Beom-Su Kim;Jong-Hyeok Park;Soo-Hee Han;Kyung-Jun Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • This study described a method of designing and implementing an artificial intelligence-based learning model for predicting the usage of building members. Artificial intelligence (AI) is widely used in various fields thanks to the development of technology, but in the field of building information management (BIM), the case of utilizing AI technology is very low due to the specificity of the data in the field and the difficulty of collecting big data. Therefore, AI problems for BIM were discovered, and a new preprocessing technique was devised to solve the specificity of data in the field. An artificial intelligence model was implemented based on the designed preprocessing technique, and it was confirmed that the accuracy of predicting the construction component usage of the implemented artificial intelligence model is at a level that can be used in the actual industry.

An Integrated Artificial Neural Network-based Precipitation Revision Model

  • Li, Tao;Xu, Wenduo;Wang, Li Na;Li, Ningpeng;Ren, Yongjun;Xia, Jinyue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1690-1707
    • /
    • 2021
  • Precipitation prediction during flood season has been a key task of climate prediction for a long time. This type of prediction is linked with the national economy and people's livelihood, and is also one of the difficult problems in climatology. At present, there are some precipitation forecast models for the flood season, but there are also some deviations from these models, which makes it difficult to forecast accurately. In this paper, based on the measured precipitation data from the flood season from 1993 to 2019 and the precipitation return data of CWRF, ANN cycle modeling and a weighted integration method is used to correct the CWRF used in today's operational systems. The MAE and TCC of the precipitation forecast in the flood season are used to check the prediction performance of the proposed algorithm model. The results demonstrate a good correction effect for the proposed algorithm. In particular, the MAE error of the new algorithm is reduced by about 50%, while the time correlation TCC is improved by about 40%. Therefore, both the generalization of the correction results and the prediction performance are improved.